收稿日期: 2023-06-01
录用日期: 2023-10-27
网络出版日期: 2024-02-01
基金资助
2023年苏州市姑苏卫生人才计划;2023年度苏州市基础研究计划(SKY2023110);2022年度苏州市科技计划项目(SKYD2022083);2020年度苏州市科技发展计划项目(SYSD2020079)
Review of the role of collagen in tumorigenesis and development
Received date: 2023-06-01
Accepted date: 2023-10-27
Online published: 2024-02-01
Supported by
2023 Gusu Talent Program;2023 Suzhou Basic Research Plan(Medical Application Basic Research, SKY2023110);2022 Suzhou Science and Technology Plan Project(SKYD2022083);2020 Suzhou Science and Technology Development Plan Project(SYSD2020079)
唐雷 , 徐迎春 , 张凤春 . 胶原蛋白在肿瘤发生和发展中的作用综述[J]. 上海交通大学学报(医学版), 2023 , 43(12) : 1577 -1584 . DOI: 10.3969/j.issn.1674-8115.2023.12.014
Collagen is one of the most abundant proteins in the body and is the main component of the extracellular matrix. Collagen regulates cellular behavior, and its dysregulation can cause a variety of diseases, including cancer. Collagen in tumors is mainly produced by fibroblasts and plays an important role in cancer progression and metastasis. Collagen can act as a prognostic predictor for cancer patients and may be an effective target for the treatment and prevention of tumor progression and metastasis. Anti-tumor drugs targeting collagen and its receptors may be developed in the future. This review focuses on the newly discovered role of collagen in cancer in recent years, specifically the role of collagen in tumor cell dormancy and immune evasion, and the participation of collagen in tumor cell metabolism.
Key words: collagen; extracellular matrix; cancer progression; tumor metastasis; immune escape
1 | SU H, KARIN M. Collagen architecture and signaling orchestrate cancer development[J]. Trends Cancer, 2023, 9(9): 764-773. |
2 | SLATTER D A, BIHAN D G, FARNDALE R W. The effect of purity upon the triple-helical stability of collagenous peptides[J]. Biomaterials, 2011, 32(27): 6621-6632. |
3 | MILAZZO M, JUNG G S, DANTI S, et al. Wave propagation and energy dissipation in collagen molecules[J]. ACS Biomater Sci Eng, 2020, 6(3): 1367-1374. |
4 | SAKOWICZ-BURKIEWICZ M, KUCZKOWSKI J, PRZYBY?A T, et al. Gene expression profile of collagen types, osteopontin in the tympanic membrane of patients with tympanosclerosis[J]. Adv Clin Exp Med, 2017, 26(6): 961-966. |
5 | RICARD-BLUM S. The collagen family[J]. Cold Spring Harb Perspect Biol, 2011, 3(1): a004978. |
6 | ZACHARIADOU C, HART T, HOOPER D, et al. Molecular characteristics of periodontal health: collagens: defining the healthy human gingival collagen transcriptome: defining the healthy human gingival collagen transcriptome[J]. J Periodontol, 2023, 94(5): 606-615. |
7 | MOUW J K, OU G, WEAVER V M. Extracellular matrix assembly: a multiscale deconstruction[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 771-785. |
8 | LEITINGER B. Transmembrane collagen receptors[J]. Annu Rev Cell Dev Biol, 2011, 27: 265-290. |
9 | SHEN B, VARDY K, HUGHES P, et al. Integrin alpha11 is an osteolectin receptor and is required for the maintenance of adult skeletal bone mass[J]. Elife, 2019, 8: e42274. |
10 | LEITINGER B. Discoidin domain receptor functions in physiological and pathological conditions[J]. Int Rev Cell Mol Biol, 2014, 310: 39-87. |
11 | FUENTES E. Modulation of glycoprotein VI and its downstream signaling pathways as an antiplatelet target[J]. Int J Mol Sci, 2022, 23(17): 9882. |
12 | MEYAARD L. LAIR and collagens in immune regulation[J]. Immunol Lett, 2010, 128(1): 26-28. |
13 | NEDEVA I R, VITALE M, ELSON A, et al. Role of OSCAR signaling in osteoclastogenesis and bone disease[J]. Front Cell Dev Biol, 2021, 9: 641162. |
14 | YEUNG J, ADILI R, STRINGHAM E N, et al. GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force[J]. Proc Natl Acad Sci USA, 2020, 117(45): 28275-28286. |
15 | OLIVARES O, MAYERS J R, GOUIRAND V, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions[J]. Nat Commun, 2017, 8: 16031. |
16 | SOCOVICH A M, NABA A. The cancer matrisome: from comprehensive characterization to biomarker discovery[J]. Semin Cell Dev Biol, 2019, 89: 157-166. |
17 | YUZHALIN A E, URBONAS T, SILVA M A, et al. A core matrisome gene signature predicts cancer outcome[J]. Br J Cancer, 2018, 118(3): 435-440. |
18 | PIETIL? E A, GONZALEZ-MOLINA J, MOYANO-GALCERAN L, et al. Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance[J]. Nat Commun, 2021, 12(1): 3904. |
19 | BIN LIM S, CHUA M L K, YEONG J P S, et al. Pan-cancer analysis connects tumor matrisome to immune response[J]. NPJ Precis Oncol, 2019, 3: 15. |
20 | BRODSKY A S, KHURANA J, GUO K S, et al. Somatic mutations in collagens are associated with a distinct tumor environment and overall survival in gastric cancer[J]. BMC Cancer, 2022, 22(1): 139. |
21 | IZZI V, DAVIS M N, NABA A. Pan-cancer analysis of the genomic alterations and mutations of the matrisome[J]. Cancers (Basel), 2020, 12(8): E2046. |
22 | WISHART A L, CONNER S J, GUARIN J R, et al. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis[J]. Sci Adv, 2020, 6(43): eabc3175. |
23 | FATHERREE J P, GUARIN J R, MCGINN R A, et al. Chemotherapy-induced collagen IV drives cancer cell motility through activation of src and focal adhesion kinase[J]. Cancer Res, 2022, 82(10): 2031-2044. |
24 | TIAN C, CLAUSER K R, ?HLUND D, et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells[J]. Proc Natl Acad Sci USA, 2019, 116(39): 19609-19618. |
25 | TIAN C, ?HLUND D, RICKELT S, et al. Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma[J]. Cancer Res, 2020, 80(7): 1461-1474. |
26 | HEBERT J D, MYERS S A, NABA A, et al. Proteomic profiling of the ECM of xenograft breast cancer metastases in different organs reveals distinct metastatic niches[J]. Cancer Res, 2020, 80(7): 1475-1485. |
27 | NABA A, CLAUSER K R, LAMAR J M, et al. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters[J]. Elife, 2014, 3: e01308. |
28 | COPPOCK D L, KOPMAN C, SCANDALIS S, et al. Preferential gene expression in quiescent human lung fibroblasts[J]. Cell Growth Differ, 1993, 4(6): 483-493. |
29 | RISSON E, NOBRE A R, MAGUER-SATTA V, et al. The Current paradigm and challenges ahead for the dormancy of disseminated tumor cells[J]. Nat Cancer, 2020, 1(7): 672-680. |
30 | DI MARTINO J S, NOBRE A R, MONDAL C, et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy[J]. Nat Cancer, 2022, 3(1): 90-107. |
31 | BAGHDADI M B, CASTEL D, MACHADO L, et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche[J]. Nature, 2018, 557(7707): 714-718. |
32 | JOHNSON J D, EDMAN J C, RUTTER W J. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain[J]. Proc Natl Acad Sci USA, 1993, 90(22): 10891. |
33 | DI MARCO E, CUTULI N, GUERRA L, et al. Molecular cloning of trkE, a novel trk-related putative tyrosine kinase receptor isolated from normal human keratinocytes and widely expressed by normal human tissues[J]. J Biol Chem, 1993, 268(32): 24290-24295. |
34 | VOGEL W, GISH G D, ALVES F, et al. The discoidin domain receptor tyrosine kinases are activated by collagen[J]. Mol Cell, 1997, 1(1): 13-23. |
35 | TAKAI K, DRAIN A P, LAWSON D A, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers[J]. Genes Dev, 2018, 32(3/4): 244-257. |
36 | SUN X, WU B, CHIANG H C, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion[J]. Nature, 2021, 599(7886): 673-678. |
37 | AMBROGIO C, GóMEZ-LóPEZ G, FALCONE M, et al. Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma[J]. Nat Med, 2016, 22(3): 270-277. |
38 | GAO H, CHAKRABORTY G, ZHANG Z, et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling[J]. Cell, 2016, 166(1): 47-62. |
39 | CHIUSA M, HU W, LIAO H J, et al. The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus[J]. J Am Soc Nephrol, 2019, 30(9): 1605-1624. |
40 | FRIEDL P, ENTSCHLADEN F, CONRAD C, et al. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion[J]. Eur J Immunol, 1998, 28(8): 2331-2343. |
41 | HARTMANN N, GIESE N A, GIESE T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer[J]. Clin Cancer Res, 2014, 20(13): 3422-3433. |
42 | SALMON H, FRANCISZKIEWICZ K, DAMOTTE D, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors[J]. J Clin Invest, 2012, 122(3): 899-910. |
43 | LARUE M M, PARKER S, PUCCINI J, et al. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer[J]. Proc Natl Acad Sci USA, 2022, 119(16): e2119168119. |
44 | CHETOUI N, EL AZREQ M A, BOISVERT M, et al. Discoidin domain receptor 1 expression in activated T cells is regulated by the ERK MAP kinase signaling pathway[J]. J Cell Biochem, 2011, 112(12): 3666-3674. |
45 | DENG J, KANG Y, CHENG C C, et al. DDR1-induced neutrophil extracellular traps drive pancreatic cancer metastasis[J]. JCI Insight, 2021, 6(17): 146133. |
46 | ZHONG X, ZHANG W, SUN T. DDR1 promotes breast tumor growth by suppressing antitumor immunity[J]. Oncol Rep, 2019, 42(6): 2844-2854. |
47 | BERTONE A L. Principles of wound healing[J]. Vet Clin N Am Equine Pract, 1989, 5(3): 449-463. |
48 | FLIER J S, UNDERHILL L H, DVORAK H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing[J]. N Engl J Med, 1986, 315(26): 1650-1659. |
49 | GANESH K, BASNET H, KAYGUSUZ Y, et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer[J]. Nat Cancer, 2020, 1(1): 28-45. |
50 | PANKOVA D, CHEN Y, TERAJIMA M, et al. Cancer-associated fibroblasts induce a collagen cross-link switch in tumor stroma[J]. Mol Cancer Res, 2016, 14(3): 287-295. |
51 | MANEVA-RADICHEVA L, EBERT U, DIMOUDIS N, et al. Fibroblast remodeling of adsorbed collagen type IV is altered in contact with cancer cells[J]. Histol Histopathol, 2008, 23(7): 833-842. |
52 | FISCHER A, WANNEMACHER J, CHRIST S, et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues[J]. Nat Immunol, 2022, 23(4): 518-531. |
53 | ALBRENGUES J, SHIELDS M A, NG D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409): eaao4227. |
54 | ARORA P D, WANG Y, BRESNICK A, et al. Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin ⅡA in cell adhesions[J]. Mol Biol Cell, 2013, 24(6): 734-747. |
55 | RAINERO E. Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer[J]. Biochem Soc Trans, 2016, 44(5): 1347-1354. |
56 | MELANDER M C, JüRGENSEN H J, MADSEN D H, et al. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)[J]. Int J Oncol, 2015, 47(4): 1177-1188. |
57 | MORRIS B A, BURKEL B, PONIK S M, et al. Collagen matrix density drives the metabolic shift in breast cancer cells[J]. EBioMedicine, 2016, 13: 146-156. |
58 | WU Y, ZANOTELLI M R, ZHANG J, et al. Matrix-driven changes in metabolism support cytoskeletal activity to promote cell migration[J]. Biophys J, 2021, 120(9): 1705-1717. |
59 | D'ANIELLO C, CERMOLA F, PALAMIDESSI A, et al. Collagen prolyl hydroxylation-dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells[J]. Cancer Res, 2019, 79(13): 3235-3250. |
60 | RAPPU P, SALO A M, MYLLYHARJU J, et al. Role of prolyl hydroxylation in the molecular interactions of collagens[J]. Essays Biochem, 2019, 63(3): 325-335. |
61 | LI Q, WANG Q, ZHANG Q, et al. Collagen prolyl 4-hydroxylase 2 predicts worse prognosis and promotes glycolysis in cervical cancer[J]. Am J Transl Res, 2019, 11(11): 6938-6951. |
62 | LIN J, JIANG L, WANG X, et al. P4HA2 promotes epithelial-to-mesenchymal transition and glioma malignancy through the collagen-dependent PI3K/AKT pathway[J]. J Oncol, 2021, 2021: 1406853. |
63 | BAI J, LIU T, TU B, et al. Autophagy loss impedes cancer-associated fibroblast activation via downregulating proline biosynthesis[J]. Autophagy, 2023, 19(2): 632-643. |
64 | WU Y, LIU X, ZHU Y, et al. Type Ⅳ collagen α5 chain promotes luminal breast cancer progression through c-Myc-driven glycolysis[J]. J Mol Cell Biol, 2023, 14(10): mjac068. |
65 | CONKLIN M W, EICKHOFF J C, RICHING K M, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma[J]. Am J Pathol, 2011, 178(3): 1221-1232. |
66 | PAVLOVA I P, NAIR S S, LUNDON D, et al. Multiphoton microscopy for identifying collagen signatures associated with biochemical recurrence in prostate cancer patients[J]. J Pers Med, 2021, 11(11): 1061. |
67 | JONES B, THOMAS G, WESTREICH J, et al. Novel quantitative signature of tumor stromal architecture: polarized light imaging differentiates between myxoid and sclerotic human breast cancer stroma[J]. Biomed Opt Express, 2020, 11(6): 3246-3262. |
68 | BRISSON B K, STEWART D C, BURGWIN C, et al. Cysteine-rich domain of type Ⅲ collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling[J]. Matrix Biol, 2022, 109: 19-33. |
69 | MOMIN N, MEHTA N K, BENNETT N R, et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy[J]. Sci Transl Med, 2019, 11(498): eaaw2614. |
70 | BERESTJUK I, LECACHEUR M, CARMINATI A, et al. Targeting discoidin domain receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma[J]. EMBO Mol Med, 2022, 14(2): e11814. |
71 | XU S, XU H, WANG W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med, 2019, 17(1): 309. |
72 | ISLAM M S, AFRIN S, SINGH B, et al. Extracellular matrix and hippo signaling as therapeutic targets of antifibrotic compounds for uterine fibroids[J]. Clin Transl Med, 2021, 11(7): e475. |
/
〈 |
|
〉 |