论著 · 基础研究

肝细胞癌相关的核编码线粒体基因及临床信息的综合预后模型

  • 克德尔亚·艾山江 ,
  • 傅怡 ,
  • 赖冬林 ,
  • 邬海龙 ,
  • 龚伟
展开
  • 1.上海交通大学医学院附属新华医院普外科,上海 200092
    2.上海健康医学院协同科研中心,上海 201318
    3.南昌大学江西医学院第一附属医院,南昌 330006
    4.上海健康医学院药学院,上海 201318
    5.上海市胆道疾病研究重点实验室,上海交通大学医学院胆道疾病研究所,上海市胆道疾病研究中心,上海 200092
克德尔亚·艾山江(1995—),女,维吾尔族,硕士生;电子信箱:kadirya95@163.com
龚 伟,电子信箱:gongwei@xinhuamed.com.cn
邬海龙,电子信箱:wuhl@sumhs.edu.cn

收稿日期: 2023-09-18

  录用日期: 2023-12-06

  网络出版日期: 2024-01-28

基金资助

国家自然科学基金(31870905);上海市卫生健康委员会基金(201940352);上海市科学技术委员会基金(22ZR1428100);上海交通大学医学院“双百人”项目(20151001);上海交通大学医学院附属新华医院临床研究项目(21XHDB10);上海市胆道疾病重点实验室研究基金(17DZ2260200)

An integrated prognostic model of nuclear-encoded mitochondrial gene signature and clinical information for hepatocellular carcinoma

  • Kedeerya Aishanjiang ,
  • Yi FU ,
  • Donglin LAI ,
  • Hailong WU ,
  • Wei GONG
Expand
  • 1.Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
    2.Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
    3.The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
    4.School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
    5.Shanghai Key Laboratory of Biliary Tract Disease Research, Research Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai Research Center of Biliary Tract Disease, Shanghai 200092, China
GONG Wei, E-mail: gongwei@xinhuamed.com.cn.
WU Hailong, E-mail: wuhl@sumhs.edu.cn

Received date: 2023-09-18

  Accepted date: 2023-12-06

  Online published: 2024-01-28

Supported by

National Natural Science Foundation of China(31870905);Scientific Program of Shanghai Municipal Health Commission(201940352);General Project of Shanghai Municipal Commission of Science and Technology(22ZR1428100);"Two-hundred Talents" Program of Shanghai Jiao Tong University School of Medicine(20151001);Xinhua Hospital Funded Clinical Research(21XHDB10);Shanghai Key Laboratory of Biliary Tract Disease Research Foundation(17DZ2260200)

摘要

目的·建立一个基于线粒体基因和临床信息的肝细胞癌(hepatocellular carcinoma,HCC)总生存率(overall survival,OS)的预后模型。方法·从癌症基因组图谱(The Cancer Genome Atlas,TCGA)下载369例HCC患者和50例肝脏正常对照的基因表达谱和临床数据。核编码的线粒体基因(nuclear encoded mitochondrial gene,NEMG)从MitoCarta3.0数据库获得。使用“DEseq2”R包和单变量Cox分析选择与HCC患者OS相关并参与氧化磷酸化、三羧酸循环和细胞凋亡通路的NEMG[(泛素细胞色素C还原酶铰链蛋白(ubiquinol cytochrome C reductase hinge protein,UQCRH腺苷三磷酸柠檬酸裂解酶(ATP citrate lyase,ACLY磷酸烯醇式丙酮酸羧激酶2(phosphoenolpyruvate carboxykinase 2,PCK2Bcl-2同源拮抗剂1(Bcl-2 homologous antagonist/killer 1,BAK1Bcl-2相关X蛋白(Bcl-2-associated X protein,BAX)和Bcl-2/腺病毒E1B相互作用蛋白3样(Bcl-2/adenovirus E1B interacting protein 3-like,BNIP3L)]。应用多变量Cox回归来确定HCC OS的独立危险因素。建立一个基于独立危险因素(6个NEMG风险特征和TNM分期)的综合预后模型和预后列线图,计算中位预后评分。以中位预后评分作为分界点,将HCC患者分为高风险组和低风险组。进行Kaplan-Meier生存曲线分析,并进行对数秩检验来评估低风险组和高风险组患者OS的差异。使用“timeROC”软件包计算受试者操作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)。用基因表达数据库(Gene Expression Omnibus,GEO)下载HCC队列(GSE14520)验证综合预后模型对1、3、5年OS的预测性能。通过实时荧光定量聚合酶链反应(real-time quantitative polymerase chain reaction,qPCR)在来自上海交通大学医学院附属新华医院的34例HCC临床样本中验证6-NEMG的相对表达水平。结果·ROC分析结果显示,与仅6-NEMG风险特征(1、3、5年AUC分别为0.77、0.66、0.65)或仅TNM分期(1、3、5年AUC分别为0.66、0.67、0.63)相比,该综合预后模型对1年(AUC,0.78)、3年(AUC,0.73)和5年(AUC,0.69)HCC OS显示出更好的预测性能。Kaplan-Meier生存曲线分析结果显示高风险组患者的OS明显比低风险组差(P=0.001)。此外,在GEO外部队列中发现该预后模型的预测性能较好(1、3、5年AUC分别为0.67、0.66、0.74),高、低风险组患者的预后差异有统计学意义(P=0.001),与TCGA数据的结果一致。在临床HCC队列中,与癌旁肝脏组织相比,除BNIP3L外,其他5个NEMG在肿瘤组织的表达水平上调或者下调。相关性分析显示,在GSE14520与临床HCC队列中预后评分与HCC肿瘤的大小和数量呈正相关。结论·构建并验证了一个将6-NEMG风险特征与TNM分期相结合的HCC预后预测模型。该模型可能有助于HCC患者的预后预测。

本文引用格式

克德尔亚·艾山江 , 傅怡 , 赖冬林 , 邬海龙 , 龚伟 . 肝细胞癌相关的核编码线粒体基因及临床信息的综合预后模型[J]. 上海交通大学学报(医学版), 2024 , 44(1) : 1 -12 . DOI: 10.3969/j.issn.1674-8115.2024.01.001

Abstract

Objective ·To establish a prognostic model for the overall survival (OS) of hepatocellular carcinoma (HCC) based on mitochondrial genes and clinical information. Methods ·The gene expression and the clinical data of 369 HCC patients and 50 controls with normal liver were downloaded from The Cancer Genome Atlas (TCGA) database. The nuclear-encoded mitochondrial genes (NEMGs) were obtained from the MitoCarta3.0 database. The "DESeq2" R package and univariate Cox analysis were used to select NEMGs [ubiquinol cytochrome C reductase hinge protein (UQCRH),ATP citrate lyase (ACLY),phosphoenolpyruvate carboxykinase 2 (PCK2), Bcl-2 homologous antagonist/killer1 (BAK1), Bcl-2-associated X protein (BAX) andBcl-2/adenovirus E1B interacting protein 3-like (BNIP3L)] in HCC that were associated with OS of HCC and participated in dysregulation of oxidative phosphorylation, tricarboxylic acid cycle and cell apoptosis. Multivariate Cox analysis was applied to select independent risk factors for OS of HCC. A comprehensive prognostic model and a prognostic nomogram with 6-NEMG risk characteristics and TNM staging were established. By using the median of prognostic scores as a cut-off, HCC patients were classified into low-risk and high-risk group. Kaplan-Meier survival curve analysis was conducted and log-rank test was performed to evaluate the survival rates between the low-risk and high-risk group. The area under the curve (AUC) values of receiver operating characteristic (ROC) curve were calculated via using the "timeROC" package. The prognostic model for HCC was validated by using the GEO HCC cohort (GSE14520) for 1, 3 and 5 years. Finally, the relative expression level of 6-NEMG was validated in 34 clinical samples of HCC from Xinhua Hospital, Shanghai Jiao Tong University School of Medicine by using real-time quantitative polymerase chain reaction (qPCR) method. Results ·Compared to 6-NEMG risk signature only (AUCs for 1, 3 and 5 years were 0.77, 0.66 and 0.65, respectively) or TNM stage only (AUCs for 1, 3 and 5 years were 0.66, 0.67 and 0.63, respectively), ROC curve analysis showed that this integrated prognostic model displayed better predictive performance for 1-year (AUC, 0.78), 3-year (AUC, 0.73) and 5-year (AUC, 0.69) OS of HCC. The Kaplan-Meier survival curve analysis showed that the OS of HCC patients in the high-risk group was significantly worse than that in the low-risk group (P=0.001). In addition, predictive performance of the prognostic model (AUC for 1, 3 and 5 years is 0.67, 0.66 and 0.74, respectively) and prognostic differences between the high-risk and low-risk group (P=0.001) were further validated in GEO (GSE14520) external cohort, and these results were consistent with the TCGA data. In addition to BNIP3L, dysregulation of five other NEMGs in the clinical HCC cohort was validated. The correlation analysis in GSE14520 and HCC clinical cohort showed a positive correlation between prognosis score and the size and number of tumors. Conclusion ·A new prognostic model that combines 6-NEMG risk characteristics with TNM staging for predicting OS in HCC patients was constructed and validated. This model may help improve the prognosis prediction of HCC patients.

参考文献

1 MILLER K D, FIDLER-BENAOUDIA M, KEEGAN T H, et al. Cancer statistics for adolescents and young adults, 2020[J]. CA Cancer J Clin, 2020, 70(6): 443-459.
2 SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33.
3 SANGRO B, SAROBE P, HERVáS-STUBBS S, et al. Advances in immunotherapy for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(8): 525-543.
4 RIMASSA L, PERSONENI N, CZAUDERNA C, et al. Systemic treatment of HCC in special populations[J]. J Hepatol, 2021, 74(4): 931-943.
5 BERTUCCIO P, TURATI F, CARIOLI G, et al. Global trends and predictions in hepatocellular carcinoma mortality[J]. J Hepatol, 2017, 67(2): 302-309.
6 YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
7 ZHU J Y, TANG B F, LI J, et al. Identification and validation of the angiogenic genes for constructing diagnostic, prognostic, and recurrence models for hepatocellular carcinoma[J]. Aging, 2020, 12(9): 7848-7873.
8 DING Z B, ERICKSEN R E, LEE Q Y, et al. Reprogramming of mitochondrial proline metabolism promotes liver tumorigenesis[J]. Amino Acids, 2021, 53(12): 1807-1815.
9 MARQUEZ J, FLORES J, KIM A H, et al. Rescue of TCA cycle dysfunction for cancer therapy[J]. J Clin Med, 2019, 8(12): 2161.
10 SONG B S, MOON J S, TIAN J W, et al. Mitoribosomal defects aggravate liver cancer via aberrant glycolytic flux and T cell exhaustion[J]. J Immunother Cancer, 2022, 10(5): e004337.
11 LI M, WANG L, WANG Y J, et al. Mitochondrial fusion via OPA1 and MFN1 supports liver tumor cell metabolism and growth[J]. Cells, 2020, 9(1): 121.
12 LI X J, LI Y M, XU A J, et al. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10(1): 1992104.
13 CAI Y L, LIN Y X, XIONG X Z, et al. Knockdown expression of MECR, a novel gene of mitochondrial FAS Ⅱ inhibits growth and colony-formation, promotes apoptosis of hepatocelluar carcinoma cells[J]. Biosci Trends, 2019, 13(3): 234-244.
14 WALLACE D C. Mitochondria and cancer[J]. Nat Rev Cancer, 2012, 12(10): 685-698.
15 SANCHO P, BARNEDA D, HEESCHEN C. Hallmarks of cancer stem cell metabolism[J]. Br J Cancer, 2016, 114(12): 1305-1312.
16 KUNTZ E M, BAQUERO P, MICHIE A M, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells[J]. Nat Med, 2017, 23(10): 1234-1240.
17 VAZQUEZ F, LIM J H, CHIM H, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress[J]. Cancer Cell, 2013, 23(3): 287-301.
18 FARGE T, SALAND E, DE TONI F, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism[J]. Cancer Discov, 2017, 7(7): 716-735.
19 ABBAS S, LUGTHART S, KAVELAARS F G, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value[J]. Blood, 2010, 116(12): 2122-2126.
20 PASINI B, MCWHINNEY S R, BEI T, et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD[J]. Eur J Hum Genet, 2008, 16(1): 79-88.
21 LEHTONEN H J, BLANCO I, PIULATS J M, et al. Conventional renal cancer in a patient with fumarate hydratase mutation[J]. Hum Pathol, 2007, 38(5): 793-796.
22 FU J, LIU G X, ZHANG X, et al. TRPM8 promotes hepatocellular carcinoma progression by inducing SNORA55 mediated nuclear-mitochondrial communication[J]. Cancer Gene Ther, 2023, 30(5): 738-751.
23 HUANG Q C, WU D, ZHAO J, et al. TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis[J]. EMBO J, 2022, 41(11): e110324.
24 CHELLA KRISHNAN K, KURT Z, BARRERE-CAIN R, et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease[J]. Cell Syst, 2018, 6(1): 103-115.e7.
25 WALLACE D C. Mitochondria and cancer[J]. Nat Rev Cancer, 2012, 12(10): 685-698.
26 LUO Y D, MA J J, LU W Q. The significance of mitochondrial dysfunction in cancer[J]. Int J Mol Sci, 2020, 21(16): 5598.
27 GAO F, LIU Q C, LI G P, et al. Identification of ubiquinol cytochrome c reductase hinge (UQCRH) as a potential diagnostic biomarker for lung adenocarcinoma[J]. Open Biol, 2016, 6(6): 150256.
28 PARK E R, KIM S B, LEE J S, et al. The mitochondrial hinge protein, UQCRH, is a novel prognostic factor for hepatocellular carcinoma[J]. Cancer Med, 2017, 6(4): 749-760.
29 SUN H, WANG F C, HUANG Y Q, et al. Targeted inhibition of ACLY expression to reverse the resistance of sorafenib in hepatocellular carcinoma[J]. J Cancer, 2022, 13(3): 951-964.
30 GRANCHI C. ATP citrate lyase (ACLY) inhibitors: an anti-cancer strategy at the crossroads of glucose and lipid metabolism[J]. Eur J Med Chem, 2018, 157: 1276-1291.
31 WEI J, LEIT S, KUAI J, et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase[J]. Nature, 2019, 568(7753): 566-570.
32 ICARD P, WU Z R, FOURNEL L, et al. ATP citrate lyase: a central metabolic enzyme in cancer[J]. Cancer Lett, 2020, 471: 125-134.
33 HAN Q, CHEN C A, YANG W, et al. ATP-citrate lyase regulates stemness and metastasis in hepatocellular carcinoma via the Wnt/β-catenin signaling pathway[J]. Hepatobiliary Pancreat Dis Int, 2021, 20(3): 251-261.
34 LEITHNER K, HRZENJAK A, TR?TZMüLLER M, et al. PCK2 activation mediates an adaptive response to glucose depletion in lung cancer[J]. Oncogene, 2015, 34(8): 1044-1050.
35 HYRO??OVá P, ARAGó M, MORENO-FELICI J, et al. PEPCK-M recoups tumor cell anabolic potential in a PKC-ζ-dependent manner[J]. Cancer Metab, 2021, 9(1): 1.
36 BLUEMEL G, PLANQUE M, MADREITER-SOKOLOWSKI C T, et al. PCK2 opposes mitochondrial respiration and maintains the redox balance in starved lung cancer cells[J]. Free Radic Biol Med, 2021, 176: 34-45.
37 LIU M X, JIN L, SUN S J, et al. Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma[J]. Oncogene, 2018, 37(12): 1637-1653.
38 COSENTINO K, HERTLEIN V, JENNER A, et al. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation[J]. Mol Cell, 2022, 82(5): 933-949.e9.
39 LUO X, O'NEILL K L, HUANG K. The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved?[J]. F1000Research, 2020, 9: 935.
40 HAO B B, LI X J, JIA X L, et al. The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L[J]. Acta Pharmacol Sin, 2020, 41(9): 1246-1254.
41 LI Y, ZHENG W Q, LU Y Y, et al. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease[J]. Cell Death Dis, 2021, 13(1): 14.
42 CHEN Y Y, WANG W H, CHE L, et al. BNIP3L-dependent mitophagy promotes HBx-induced cancer stemness of hepatocellular carcinoma cells via glycolysis metabolism reprogramming[J]. Cancers, 2020, 12(3): 655.
文章导航

/