收稿日期: 2023-08-07
录用日期: 2023-11-30
网络出版日期: 2024-02-28
基金资助
国家自然科学基金(81802226);上海市浦江人才计划(2019PJD038);上海市“医苑新星”青年医学人才培养资助计划;上海交通大学医学院“双百人”项目(20220017);上海市第六人民医院优秀人才培育项目(ynyq202101)
Exploration of the relationship between nicotinamide metabolism-related genes and osteoarthritis
Received date: 2023-08-07
Accepted date: 2023-11-30
Online published: 2024-02-28
Supported by
National Natural Science Foundation of China(81802226);Shanghai Pujiang Program(2019PJD038);Shanghai “Rising Stars of Medical Talent” Youth Development Program (Youth Medical Talents-Specialist Program);“Two-hundred Talents” Program of Shanghai Jiao Tong University School of Medicine(20220017);Shanghai Sixth People's Hospital Excellent Young Scientist Development Program(ynyq202101)
目的·利用生物信息学方法探索骨关节炎与烟酰胺代谢相关基因之间的关系,找到具有诊断价值和治疗潜力的关键基因。方法·以“Osteoarthritis”为检索词,在GEO数据库中获取GSE12021、GSE55235和GSE55457数据集,将GSE55457作为验证集。去除GSE12021和GSE55235数据集的批次效应后,得到标准化的合并数据集,将其作为训练集,并在训练集中筛选出差异表达基因(differentially expressed genes,DEGs)。在GeneCards数据库和MSigDB数据库中获取所有烟酰胺代谢相关基因(nicotinamide metabolism-related genes,NMRGs)。将DEGs与NMRGs取交集,得到烟酰胺代谢相关差异表达基因(nicotinamide metabolism-related differentially expressed genes,NMRDEGs)。对训练集进行基因集富集分析(gene set enrichment analysis,GSEA),对NMRDEGs进行基因本体(Gene Ontology,GO)、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析。通过LASSO(least absolute shrinkage and selection operator)和支持向量机(support vector machine,SVM)分析筛选出NMRDEGs关键基因,构建骨关节炎诊断模型,并用验证集GSE55457进行验证。通过单样本基因集富集分析(single sample gene set enrichment analysis,ssGSEA)分析免疫细胞的浸润类型。通过DGIdb数据库、ENCORI数据库和CHIPBase数据库对关键基因的mRNA进行相互作用网络和药物小分子预测。通过干扰小RNA(small interfering RNA,siRNA)敲降软骨细胞内NMRDEGs关键基因,用实时荧光定量聚合酶链反应(real-time fluorogenic quantitative polymerase chain reaction,RT-qPCR)检测关键基因敲降对软骨形成相关基因表达的影响。结果·发现了NAMPT、TIPARP等7个NMRDEGs。GO和KEGG分析富集到核因子κB信号通路和正向调节白细胞介素-1介导的信号通路等。GSEA富集到缺氧诱导因子-1转录因子通路(Hif1 Tfpathway)和多配体蛋白聚糖1(syndecan 1)通路等信号通路。LASSO分析和SVM分析共同筛选得到NPAS2、TIPARP和NAMPT关键基因并构建了骨关节炎诊断模型,验证集检验提示诊断模型诊断效果具有高准确度。ssGSEA免疫浸润分析的结果显示,巨噬细胞等15种免疫细胞存在显著差异(均P<0.05)。找到了7个针对关键基因的潜在药物小分子,19种与关键基因相互作用且上游基因与下游基因数量之和大于10的miRNA,19种与关键基因结合且上游基因与下游基因数量之和大于7的转录因子,27个聚类数>19的RNA结合蛋白。RT-qPCR结果显示,关键基因敲降会降低软骨形成相关基因的表达。结论·NPAS2、TIPARP和NAMPT为烟酰胺代谢相关的关键基因,可据此构建骨关节炎诊断模型。
邓青松 , 张长青 , 陶诗聪 . 烟酰胺代谢相关基因与骨关节炎的关系探索[J]. 上海交通大学学报(医学版), 2024 , 44(2) : 145 -160 . DOI: 10.3969/j.issn.1674-8115.2024.02.001
Objective ·To explore the relationship between osteoarthritis and nicotinamide metabolism-related genes using bioinformatics analysis, and identify key genes with diagnostic value and therapeutic potential. Methods ·By using "Osteoarthritis" as a search term, GSE12021, GSE55235, and GSE55457 were obtained from the GEO database, with GSE55457 being used as the validation set. After removing batch effects from the GSE12021 and GSE55235 datasets, the standardized combined dataset was obtained and used as the training dataset. Differentially expressed genes (DEGs) were identified from the training dataset. All nicotinamide metabolism-related genes (NMRGs) were obtained from the GeneCards and MSigDB databases. The intersection of DEGs and NMRGs was taken to obtain nicotinamide metabolism-related differentially expressed genes (NMRDEGs). Gene set enrichment analysis (GSEA) was performed on the training dataset, while gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on NMRDEGs. Key genes were selected by using least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM) analysis in NMRDEGs to build an osteoarthritis diagnosis model which was validated by using the GSE55457 dataset. Single sample gene set enrichment analysis (ssGSEA) was used to analyze the immune cell infiltration type. Interactions networks and drug molecule predictions were obtained for these key genes' mRNA with the DGIdb, ENCORI, and CHIPBase databases. siRNA was used to knock down the key genes in chondrocytes, and then real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of chondrogenesis-related genes. Results ·Seven NMRDEGs, including NAMPT, TIPARP, were discovered. GO and KEGG analysis enriched some signaling pathways, such as nuclear factor-κB signaling pathway and positive regulation of interleukin-1-mediated signaling pathway. GSEA enriched pathways such as Hif1 Tfpathway and syndecan 1 pathway. Key genes NPAS2, TIPARP, and NAMPT were identified through LASSO and SVM analysis, and used to construct an osteoarthritis diagnostic model. The validated results showed that the diagnostic model had high accuracy. Immune infiltration analysis results obtained by ssGSEA showed significant differences (all P<0.05) in 15 types of immune cells, including macrophages. Seven potential small molecules targeting key genes were identified, along with 19 miRNAs with the sum of upstream and downstream >10, 19 transcription factors with upstream and downstream >7, and 27 RNA binding proteins with clusterNum >19. The results of RT-qPCR showed that knocking down key genes reduced the expression of chondrogenesis-related genes. Conclusion ·Through bioinformatics analysis, key genes related to nicotinamide metabolism, NPAS2, TIPARP, and NAMPT, are discovered, and an osteoarthritis diagnostic model is constructed.
Key words: osteoarthritis; nicotinamide metabolism; bioinformatics; diagnostic model; nomogram
1 | HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759. |
2 | YAO Q, WU X H, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 56. |
3 | REVOLLO J R, GRIMM A A, IMAI S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells[J]. J Biol Chem, 2004, 279(49): 50754-50763. |
4 | TRAVELLI C, COLOMBO G, MOLA S, et al. NAMPT: A pleiotropic modulator of monocytes and macrophages[J]. Pharmacol Res, 2018, 135: 25-36. |
5 | GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nat Rev Endocrinol, 2015, 11(9): 535-546. |
6 | JOHNSON S, IMAI S. NAD+ biosynthesis, aging, and disease[J]. F1000Res, 2018, 7: 132. |
7 | YANG S, RYU J H, OH H, et al. NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis[J]. Ann Rheum Dis, 2015, 74(3): 595-602. |
8 | PRESLE N, POTTIE P, DUMOND H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production[J]. Osteoarthritis Cartilage, 2006, 14(7): 690-695. |
9 | DAVIS S, MELTZER P S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor[J]. Bioinformatics, 2007, 23(14):1846-1847. |
10 | HUBER R, HUMMERT C, GAUSMANN U, et al. Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane[J]. Arthritis Res Ther, 2008, 10(4): R98. |
11 | WOETZEL D, HUBER R, KUPFER P, et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation[J]. Arthritis Res Ther, 2014, 16(2): R84. |
12 | STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33. |
13 | LIBERZON A, BIRGER C, THORVALDSDóTTIR H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection[J]. Cell Syst, 2015, 1(6): 417-425. |
14 | LEEK J T, JOHNSON W E, PARKER H S, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-883. |
15 | RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. |
16 | YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. |
17 | LIBERZON A, SUBRAMANIAN A, PINCHBACK R, et al. Molecular signatures database (MSigDB) 3.0[J]. Bioinformatics, 2011, 27(12): 1739-1740. |
18 | YANG L, QU Q, HAO Z, et al. Powerful identification of large quantitative trait loci using genome-wide R/glmnet-based regression[J]. J Hered, 2022, 113(4): 472-478. |
19 | NARALA S, LI S Q, KLIMAS N K, et al. Application of least absolute shrinkage and selection operator logistic regression for the histopathological comparison of chondrodermatitis nodularis helicis and hyperplastic actinic keratosis[J]. J Cutan Pathol, 2021, 48(6): 739-744. |
20 | PARK S Y. Nomogram: an analogue tool to deliver digital knowledge[J]. J Thorac Cardiovasc Surg, 2018, 155(4): 1793. |
21 | SUN L, PANG Y, WANG X, et al. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters[J]. Acta Pharm Sin B, 2019, 9(4): 702-710. |
22 | XIAO B, LIU L, LI A, et al. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma[J]. Front Oncol, 2020, 10: 607622. |
23 | FRESHOUR S L, KIWALA S, COTTO K C, et al. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts[J]. Nucleic Acids Res, 2021, 49(D1): D1144-D1151. |
24 | LI J H, LIU S, ZHOU H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(D1): D92-D97. |
25 | ZHOU K R, LIU S, SUN W J, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data[J]. Nucleic Acids Res, 2017, 45(D1): D43-D50. |
26 | NAVAS L E, CARNERO A. NAD+ metabolism, stemness, the immune response, and cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 2. |
27 | WANG Q H, LI Y, DOU D Y, et al. Nicotinamide mononucleotide-elicited NAMPT signaling activation aggravated adjuvant-induced arthritis in rats by affecting peripheral immune cells differentiation[J]. Int Immunopharmacol, 2021, 98: 107856. |
28 | NOWELL M, EVANS L, WILLIAMS A. PBEF/NAMPT/visfatin: a promising drug target for treating rheumatoid arthritis?[J]. Future Med Chem, 2012, 4(6): 751-769. |
29 | DIOUM E M, RUTTER J, TUCKERMAN J R, et al. NPAS2: a gas-responsive transcription factor[J]. Science, 2002, 298(5602): 2385-2387. |
30 | BECKER-KRAIL D D, PAREKH P K, KETCHESIN K D, et al. Circadian transcription factor NPAS2 and the NAD+-dependent deacetylase SIRT1 interact in the mouse nucleus accumbens and regulate reward[J]. Eur J Neurosci, 2022, 55(3): 675-693. |
31 | ZHANG L, CAO J, DONG L, et al. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis[J]. Proc Natl Acad Sci USA, 2020, 117(24): 13447-13456. |
32 | SWAHN H, OLMER M, LOTZ M K. RNA-binding proteins that are highly expressed and enriched in healthy cartilage but suppressed in osteoarthritis[J]. Front Cell Dev Biol, 2023, 11: 1208315. |
33 | WYATT L A, NWOSU L N, WILSON D, et al. Molecular expression patterns in the synovium and their association with advanced symptomatic knee osteoarthritis[J]. Osteoarthritis Cartilage, 2019, 27(4): 667-675. |
34 | YANG S, KIM J, RYU J H, et al. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction[J]. Nat Med, 2010, 16(6): 687-693. |
35 | QIN Y Y, LI M, FENG X, et al. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke[J]. Free Radic Biol Med, 2017, 104: 333-345. |
36 | CORYELL P R, DIEKMAN B O, LOESER R F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol, 2021, 17(1): 47-57. |
37 | SAVVIDOU O, MILONAKI M, GOUMENOS S, et al. Glucocorticoid signaling and osteoarthritis[J]. Mol Cell Endocrinol, 2019, 480: 153-166. |
38 | SACTA M A, THARMALINGAM B, COPPO M, et al. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages[J]. Elife, 2018, 7: e34864. |
39 | MIHAILIDOU C, PANAGIOTOU C, KIARIS H, et al. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer[J]. Mol Cell Endocrinol, 2016, 436: 211-223. |
40 | DIBATTISTA J A, MARTEL-PELLETIER J, ANTAKLY T, et al. Reduced expression of glucocorticoid receptor levels in human osteoarthritic chondrocytes. Role in the suppression of metalloprotease synthesis[J]. J Clin Endocrinol Metab, 1993, 76(5): 1128-1134. |
41 | PELLETIER J P, DIBATTISTA J A, RANGER P, et al. Modulation of the expression of glucocorticoid receptors in synovial fibroblasts and chondrocytes by prostaglandins and NSAIDs[J]. Am J Ther, 1996, 3(2): 115-119. |
42 | ZHANG F J, LUO W, LEI G H. Role of HIF-1α and HIF-2α in osteoarthritis[J]. Joint Bone Spine, 2015, 82(3): 144-147. |
43 | HU S L, ZHANG C W, NI L B, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J]. Cell Death Dis, 2020, 11(6): 481. |
44 | OKADA K, MORI D, MAKII Y, et al. Hypoxia-inducible factor-1 α maintains mouse articular cartilage through suppression of NF-κB signaling[J]. Sci Rep, 2020, 10(1): 5425. |
45 | BOUAZIZ W, SIGAUX J, MODROWSKI D, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice[J]. Proc Natl Acad Sci USA, 2016, 113(19): 5453-5458. |
46 | ZHANG H, WANG L, CUI J, et al. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression[J]. Sci Adv, 2023, 9(14): eabo7868. |
47 | ZHANG X A, KONG H. Mechanism of HIFs in osteoarthritis[J]. Front Immunol, 2023, 14: 1168799. |
48 | PATTERSON A M, CARTWRIGHT A, DAVID G, et al. Differential expression of syndecans and glypicans in chronically inflamed synovium[J]. Ann Rheum Dis, 2008, 67(5): 592-601. |
49 | KAUFMAN J, CARIC D, VUKOJEVIC K. Expression pattern of Syndecan-1 and HSP-70 in hip tissue of patients with osteoarthritis[J]. J Orthop, 2019, 17: 134-138. |
50 | SALMINEN-MANKONEN H, S??M?NEN A M, JALKANEN M, et al. Syndecan-1 expression is upregulated in degenerating articular cartilage in a transgenic mouse model for osteoarthritis[J]. Scand J Rheumatol, 2005, 34(6): 469-474. |
51 | ZHANG Y Q, YANG Y, WANG C Z, et al. Identification of diagnostic biomarkers of osteoarthritis based on multi-chip integrated analysis and machine learning[J]. DNA Cell Biol, 2020, 39(12): 2245-2256. |
52 | HAN Y, WU J, GONG Z, et al. Identification and development of a novel 5-gene diagnostic model based on immune infiltration analysis of osteoarthritis[J]. J Transl Med, 2021, 19(1): 522. |
53 | JAIME P, GARCíA-GUERRERO N, ESTELLA R, et al. CD56+/CD16- natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis[J]. Osteoarthritis Cartilage, 2017, 25(10): 1708-1718. |
54 | WANG H, ZENG Y, ZHANG M, et al. CD56brightCD16- natural killer cells are shifted toward an IFN-γ-promoting phenotype with reduced regulatory capacity in osteoarthritis[J]. Hum Immunol, 2019, 80(10): 871-877. |
55 | MORADI B, SCHNATZER P, HAGMANN S, et al. CD4+ CD25?/highCD127low/? regulatory T cells are enriched in rheumatoid arthritis and osteoarthritis joints: analysis of frequency and phenotype in synovial membrane, synovial fluid and peripheral blood[J]. Arthritis Res Ther, 2014, 16(2): R97. |
56 | LI Y S, LUO W, ZHU S A, et al. T cells in osteoarthritis: alterations and beyond[J]. Front Immunol, 2017, 8: 356. |
57 | CHEN K, KOLLS J K. T cell-mediated host immune defenses in the lung[J]. Annu Rev Immunol, 2013, 31: 605-633. |
58 | REN W K, LIU G, CHEN S, et al. Melatonin signaling in T cells: functions and applications[J]. J Pineal Res, 2017, 62(3): e12394. |
59 | ZHANG L, LI Y G, LI Y H, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis[J]. PLoS One, 2012, 7(4): e31000. |
60 | DOLHAIN R J E M, van der HEIDEN A N, TER HAAR N T, et al. Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis[J]. Arthritis Rheum, 1996, 39(12): 1961-1969. |
61 | NEES T A, ZHANG J A, PLATZER H, et al. Infiltration profile of regulatory T cells in osteoarthritis-related pain and disability[J]. Biomedicines, 2022, 10(9): 2111. |
62 | KELLY P A, BURCKART G J, VENKATARAMANAN R. Tacrolimus: a new immunosuppressive agent[J]. Am J Health Syst Pharm, 1995, 52(14): 1521-1535. |
63 | KITAHARA K, KAWAI S. Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis[J]. Curr Opin Rheumatol, 2007, 19(3): 238-245. |
64 | BAGRI N K. Cyclosporine for systemic onset juvenile idiopathic arthritis: current stand and future directions[J]. Indian J Pediatr, 2019, 86(7): 576-577. |
65 | MANEIX L, BEAUCHEF G, SERVENT A, et al. 17β-oestradiol up-regulates the expression of a functional UDP-glucose dehydrogenase in articular chondrocytes: comparison with effects of cytokines and growth factors[J]. Rheumatology (Oxford), 2008, 47(3): 281-288. |
66 | CLAASSEN H, SCHüNKE M, KURZ B. Estradiol protects cultured articular chondrocytes from oxygen-radical-induced damage[J]. Cell Tissue Res, 2005, 319(3): 439-445. |
67 | PANG H W, CHEN S H, KLYNE D M, et al. Low back pain and osteoarthritis pain: a perspective of estrogen[J]. Bone Res, 2023, 11(1): 42. |
/
〈 |
|
〉 |