收稿日期: 2023-07-05
录用日期: 2023-11-30
网络出版日期: 2024-02-28
基金资助
国家自然科学基金(81960388);甘肃省科技计划项目(23JRRA0957);兰州市科技计划项目(2023-2-37);兰州大学医学科研创新能力提升项目(lzuyxcx-2022-165);兰州市城关区科技计划项目(2020-2-11-3)
Establishment and evaluation of nomogram for differential diagnosis of systemic lupus erythematosus based on laboratory indications
Received date: 2023-07-05
Accepted date: 2023-11-30
Online published: 2024-02-28
Supported by
National Natural Science Foundation of China(81960388);Science and Technology Plan Project of Gansu Province(23JRRA0957);Science and Technology Plan Project of Lanzhou City(2023-2-37);Lanzhou University Medical Research Improvement Project(lzuyxcx-2022-165);Science and Technology Plan Project of Chengguan District of Lanzhou City(2020-2-11-3)
目的·基于实验室指标,建立早期系统性红斑狼疮(systemic lupus erythmatosus,SLE)与其他自身免疫性疾病鉴别诊断的列线图并评估其效能。方法·选择2017年1月—2021年12月在兰州大学第一医院就诊的535例SLE患者(SLE组)以及同时期的535例其他自身免疫性疾病患者(对照组)。收集并比较2组患者的基础信息及实验室检查指标(共116项)。将SLE组和对照组分别按7∶3的比例随机分为训练集和验证集,采用LASSO回归、多因素Logistic回归筛选SLE的主要危险因子,并建立早期SLE鉴别诊断列线图(简称“SLE列线图”)。使用Bootstrap法行内部重复抽样1 000次对列线图进行校准,分别利用受试者操作特征曲线(receiver operator characteristic curve,ROC曲线)、决策曲线分析(decision curve analysis,DCA)评估SLE列线图的鉴别诊断的能力以及在临床应用中的价值。采用R语言“DynNom”包将列线图转换为电子计算器,并通过3组患者数据对其与SLE列线图的一致性进行验证。结果·LASSO回归和多因素Logistic回归共筛选出6个SLE的主要危险因子,即抗核抗体(antinuclear antibody,ANA)、抗双链DNA(anti-double-stranded DNA,anti-dsDNA)抗体、抗核糖核蛋白抗体/史密斯抗体(anti-ribonucleoprotein antibody/anti-Simth antibody,anti-nRNP/Sm)、抗核糖体P蛋白(anti-ribosomal P protein,anti-P)抗体、抗核小体抗体(anti-nucleosome antibody,ANuA)、尿蛋白(urinary protein,PRO),并由该6个因子共同构建SLE列线图。该列线图的校准曲线在训练集和验证集的标准误分别为0.009和0.015,其ROC曲线下面积分别为0.889和0.869。DCA的结果显示,当SLE列线图的风险阈概率在0.15~0.95时,该列线图取得的净获益较高。电子计算器的预测结果显示,1号SLE患者的ANA(滴度1∶100)为阳性,其患病率为0.166;2号患者的ANA(滴度1∶100)、ANuA(滴度1∶100)均为阳性,其患病率为0.676;3号患者的PRO、ANA(滴度1∶100)、ANuA(滴度1∶100)、anti-P抗体(滴度1∶100)均为阳性,其患病率为0.990,这与SLE列线图鉴别诊断的结果相一致。结论·基于ANA、anti-dsDNA抗体、anti-nRNP/Sm、anti-P抗体、ANuA、PRO建立的SLE列线图以及转换成的电子计算器可较好地鉴别SLE早期和其他自身免疫性疾病,具有重要的临床应用价值。
杨婧偊 , 陈留宝 , 王康太 , 杨兴智 , 于海涛 . 基于实验室指标的系统性红斑狼疮鉴别诊断列线图的构建及评估[J]. 上海交通大学学报(医学版), 2024 , 44(2) : 204 -211 . DOI: 10.3969/j.issn.1674-8115.2024.02.006
Objective ·To establish a nomogram for the differential diagnosis of early systemic lupus erythematosus (SLE) and other autoimmune diseases based on laboratory indications, and to evaluate its efficacy. Methods ·A total of 535 SLE patients admitted to the First Hospital of Lanzhou University from January 2017 to December 2021 were selected as SLE group, and 535 patients with other autoimmune diseases during the same period were selected as control group. Basic information and laboratory test indicators of the SLE group and control group were collected and compared. The SLE group and control group were randomly assigned to the training set and the validation set at a ratio of 7∶3, respectively. LASSO regression method and multivariate Logistic regression were used to select the main risk factors of SLE. The nomogram for differential diagnosis of early SLE (SLE nomogram) was established according to the selected main risk factors. Bootstrap method was used to conduct internal repeated sampling for 1 000 times to calibrate the nomogram. The receiver operator characteristic curve (ROC curve) and decision curve analysis (DCA) were performed to evaluate the differential diagnosis ability and the value in clinical application of SLE nomogram, respectively. The "DynNom" package of R language was used to convert the nomogram into an electronic calculator, and its consistency with SLE nomogram was verified by data from 3 groups of patients. Results ·LASSO regression and multivariate Logistic regression identified six major risk factors for SLE, including antinuclear antibody (ANA), anti-double-stranded DNA (anti-dsDNA) antibody, anti-ribonucleoprotein antibody/anti-Simth antibody (anti-nRNP/Sm), anti-ribosomal P protein (anti-P) antibody, anti-nucleosome antibody (ANuA) and urinary protein (PRO), which were used to construct the SLE nomogram. The calibration curve of the SLE nomogram had standard errors of 0.009 and 0.015 in the training set and validation set, respectively, and its area under the curve (AUC) was 0.889 and 0.869, respectively. The results of DCA showed that when the risk threshold of SLE nomogram was 0.15?0.95, the model achieved more net benefit. The prediction results of the electronic calculator showed that when ANA (titer 1∶100) was positive in SLE patient No.1, the prevalence was 0.166; when both ANA (titer 1∶100) and ANuA (titer 1∶100) were positive in patient No.2, the prevalence was 0.676; when all of PRO, ANA (titer 1∶100), ANuA (titer 1∶100) and anti-P antibody (titer 1∶100) were positive in patient No.3, the prevalence was 0.990, which was consistent with the differential diagnosis results of the SLE nomogram. Conclusion ·The established SLE nomogram based on ANA, anti-dsDNA antibody, anti-nRNP/Sm, anti-P antibody, ANuA and PRO and its conversion into an electronic calculator can effectively distinguish early SLE from other autoimmune diseases, and have important clinical application value.
1 | ROSE J. Autoimmune connective tissue diseases: systemic lupus erythematosus and rheumatoid arthritis[J]. Emerg Med Clin North Am, 2022, 40(1): 179-191. |
2 | DAMMACCO R. Systemic lupus erythematosus and ocular involvement: an overview[J]. Clin Exp Med, 2018, 18(2): 135-149. |
3 | IQBAL S, SHER M R, GOOD R A, et al. Diversity in presenting manifestations of systemic lupus erythematosus in children[J]. J Pediatr, 1999, 135(4): 500-505. |
4 | ADIGA A, NUGENT K. Lupus hepatitis and autoimmune hepatitis (lupoid hepatitis)[J]. Am J Med Sci, 2017, 353(4): 329-335. |
5 | CHOWDHARY V R, CROWSON C S, POTERUCHA J J, et al. Liver involvement in systemic lupus erythematosus: case review of 40 patients[J]. J Rheumatol, 2008, 35(11): 2159-2164. |
6 | ZHU X L, XU X M, CHEN S, et al. Lupus enteritis masquerading as Crohn's disease[J]. BMC Gastroenterol, 2019, 19(1): 154. |
7 | YANG Z X, REN Y P, LIU D H, et al. Prevalence of systemic autoimmune rheumatic diseases and clinical significance of ANA profile: data from a tertiary hospital in Shanghai, China[J]. APMIS, 2016, 124(9): 805-811. |
8 | MARTORELL-MARUGáN J, CHIERICI M, JURMAN G, et al. Differential diagnosis of systemic lupus erythematosus and Sj?gren's syndrome using machine learning and multi-omics data[J]. Comput Biol Med, 2023, 152: 106373. |
9 | WALLACE D J, GAVIN I M, KARPENKO O, et al. Cytokine and chemokine profiles in fibromyalgia, rheumatoid arthritis and systemic lupus erythematosus: a potentially useful tool in differential diagnosis[J]. Rheumatol Int, 2015, 35(6): 991-996. |
10 | 刘欢欢, 潘发明, 陈礼文. 抗核小体抗体和抗Sm抗体鉴别诊断系统性红斑狼疮的meta分析[J]. 现代检验医学杂志, 2021, 36(3): 1-6, 31. |
10 | LIU H H, PAN F M, CHEN L W. Value of antinucleosome antibody and anti-Sm antibody in the differential diagnosis of systemic lupus erythematosus: a meta-analysis[J]. Journal of Modern Laboratory Medicine, 2021, 36(3): 1-6, 31. |
11 | LEE J H, YOON Y C, JIN W, et al. Development and validation of nomograms for malignancy prediction in soft tissue tumors using magnetic resonance imaging measurements[J]. Sci Rep, 2019, 9(1): 4897. |
12 | CHEN W, WANG B, ZENG R, et al. Development and validation of a nomogram for the estimation of response to platinum-based neoadjuvant chemotherapy in patients with locally advanced cervical cancer[J]. Cancer Manag Res, 2021, 13: 1279-1289. |
13 | BALACHANDRAN V P, GONEN M, SMITH J J, et al. Nomograms in oncology: more than meets the eye[J]. Lancet Oncol, 2015, 16(4): e173-e180. |
14 | HOCHBERG M C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis Rheum, 1997, 40(9): 1725. |
15 | PETRI M, ORBAI A M, ALARCóN G S, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus[J]. Arthritis Rheum, 2012, 64(8): 2677-2686. |
16 | LAQUEUR H S, SHEV A B, KAGAWA R M C. SuperMICE: an ensemble machine learning approach to multiple imputation by chained equations[J]. Am J Epidemiol, 2022, 191(3): 516-525. |
17 | ZHANG Z H. Multiple imputation with multivariate imputation by chained equation (MICE) package[J]. Ann Transl Med, 2016, 4(2): 30. |
18 | WANG Y Q, WANG L X, SUN Y L, et al. Prediction model for the risk of osteoporosis incorporating factors of disease history and living habits in physical examination of population in Chongqing, Southwest China: based on artificial neural network[J]. BMC Public Health, 2021, 21(1): 991. |
19 | SAUERBREI W, ROYSTON P, BINDER H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building[J]. Stat Med, 2007, 26(30): 5512-5528. |
20 | MEHER P K, RAI A, RAO A R. mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net[J]. BMC Bioinformatics, 2021, 22(1): 342. |
21 | RAO G. What is an ROC curve?[J]. J Fam Pract, 2003, 52(9): 695. |
22 | VICKERS A J, HOLLAND F. Decision curve analysis to evaluate the clinical benefit of prediction models[J]. Spine J, 2021, 21(10): 1643-1648. |
23 | SHANG X Y, REN L S, SUN G R, et al. Anti-dsDNA, anti-nucleosome, anti-C1q, and anti-histone antibodies as markers of active lupus nephritis and systemic lupus erythematosus disease activity[J]. Immun Inflamm Dis, 2021, 9(2): 407-418. |
24 | 姜波, 徐兆珍, 姜振忠, 等. 三种自身抗体和补体C3水平检测对狼疮性肾炎患者的诊断意义[J]. 华西医学, 2016, 31(2): 309-311. |
24 | JIANG B, XU Z Z, JIANG Z Z, et al. Diagnostic significance of three autoantibodies and complement C3 levels in patients with lupus nephritis[J]. West China Medical Journal, 2016, 31(2): 309-311. |
25 | 陈麒麟, 李洁, 邱凤, 等. 系统性红斑狼疮患者的嗅觉功能及其相关因素的研究[J]. 中华风湿病学杂志, 2014, 18(6): 408-410. |
25 | CHEN Q L, LI J, QIU F, et al. Olfactory function and related factors in systemic lupus erythematosus[J]. Chinese Journal of Rheumatology, 2014, 18(6): 408-410. |
26 | 任延明. 抗核抗体联合抗核抗体谱对系统性红斑狼疮的临床诊断价值[J]. 中国现代药物应用, 2021, 15(4): 70-72. |
26 | REN Y M. The clinical diagnostic value of antinuclear antibody combined with antinuclear antibody spectrum in systemic lupus erythematosus[J]. Chinese Journal of Modern Drug Application, 2021, 15(4): 70-72. |
27 | 王艳萍, 邹麟, 郭婷, 等. 抗核糖体P蛋白、抗Smith、抗dsDNA、抗核小体及抗组蛋白抗体对系统性红斑狼疮的临床价值探讨[J]. 现代免疫学, 2021, 41(5): 353-360, 379. |
27 | WANG Y P, ZOU L, GUO T, et al. The clinical value of anti-ribosomal P protein, anti-Smith, anti-dsDNA, anti-nucleosome and anti-histone antibodies for systemic lupus erythematosus[J]. Current Immunology, 2021, 41(5): 353-360, 379. |
28 | ESTéVEZ DEL TORO M, VARELA CEBALLOS I, CHICO CAPOTE A, et al. Predictive factors for the development of lupus nephritis after diagnosis of systemic lupus erythematosus[J]. Reumatol Clin (Engl Ed), 2022, 18(9): 513-517. |
29 | ABOZAID H S M, HEFNY H M, ABUALFADL E M, et al. Negative ANA-IIF in SLE patients: what is beyond?[J]. Clin Rheumatol, 2023, 42(7): 1819-1826. |
/
〈 |
|
〉 |