综述

神经调控技术在帕金森病治疗中的应用研究进展

  • 胡灿芳 ,
  • 钟传钰 ,
  • 曹立
展开
  • 1.上海交通大学医学院附属第六人民医院神经内科,上海 200233
    2.上海市第六人民医院金山分院神经内科,上海 201599
    3.上海交通大学医学院附属第六人民医院超声医学科,上海 200233
胡灿芳(1986—),女,主治医师,硕士生;电子信箱:tian2008shi2004@163.com
曹 立,电子信箱:caoli2000@yeah.net

收稿日期: 2022-12-02

  录用日期: 2024-01-02

  网络出版日期: 2024-02-28

基金资助

“科技创新行动计划”医学创新研究专项重点项目(21Y21901100);上海申康医院发展中心医企融合创新成果转化专项(SHDC2022CRD037)

Research progress of neuromodulation in the treatment of Parkinson's disease

  • Canfang HU ,
  • Chuanyu ZHONG ,
  • Li CAO
Expand
  • 1.Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
    2.Department of Neurology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai 201599, China
    3.Department of Ultrasound Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
CAO Li, E-mail: caoli2000@yeah.net.

Received date: 2022-12-02

  Accepted date: 2024-01-02

  Online published: 2024-02-28

Supported by

“Science and Technology Innovation Action Plan” of Medical Innovation Research Major Project(21Y21901100);Medicine-industry Integration Innovation Product Translation Project of Shanghai Hospital Development Center(SHDC2022CRD037)

摘要

帕金森病(Parkinson's disease,PD)是一种常见的神经系统退行性疾病,以静止性震颤、运动迟缓、肌强直、姿势异常为主要临床特征。多巴胺能药物是治疗PD的主要药物,但长期使用会使患者出现药效减退,甚至发生异动症、“开-关”现象等不良反应。神经调控技术是一种通过电能、磁场、超声等方式来兴奋或抑制大脑神经元活动、调节神经可塑性变化,从而达到治疗、改善疾病的生物医学工程技术。在PD的非药物治疗方面,神经调控技术作为一类新型的治疗手段,显示出了良好的疗效并具有不良反应少、易耐受等优点。基于此,该文针对脑深部电刺激、经颅磁刺激、经颅直流电刺激、经颅聚焦超声等常见神经调控技术在PD治疗中的应用研究进展进行综述。

本文引用格式

胡灿芳 , 钟传钰 , 曹立 . 神经调控技术在帕金森病治疗中的应用研究进展[J]. 上海交通大学学报(医学版), 2024 , 44(2) : 258 -263 . DOI: 10.3969/j.issn.1674-8115.2024.02.012

Abstract

Parkinson's disease (PD) is a common degenerative neurological disorder, characterized by static tremor, bradykinesia, myotonia and postural abnormalities. Dopaminergic drugs are the main drugs in the treatment of PD, but long-term use will lead to drug efficacy loss, and even cause some adverse reactions such as dyskinesia and "on-off" phenomenon. Neuromodulation is a kind of biomedical engineering technology that can stimulate or inhibit the activity of brain neurons and regulate the changes of neuroplasticity by means of electric energy, magnetic field, ultrasound and other methods, so as to achieve treatment and improvement of diseases. In the non-drug treatment of PD, neuromodulation, as a new therapeutic means, has shown good efficacy, and has the advantages of small adverse reactions and easy tolerance. Based on this, this article reviews the research progress of several common neuromodulation in PD, including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation and transcranial focused ultrasound.

参考文献

1 HODAIE M, NEIMAT J S, LOZANO A M. The dopaminergic nigrostriatal system and Parkinson's disease: molecular events in development, disease, and cell death, and new therapeutic strategies[J]. Neurosurgery, 2007, 60(1): 17-28; discussion 28-30.
2 POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinson's disease[J]. Mov Disord, 2015, 30(12): 1591-1601.
3 AQUINO C C, FOX S H. Clinical spectrum of levodopa-induced complications[J]. Mov Disord, 2015, 30(1): 80-89.
4 PARPURA V, SILVA G A, TASS P A, et al. Neuromodulation: selected approaches and challenges[J]. J Neurochem, 2013, 124(4): 436-453.
5 BENABID A L, POLLAK P, LOUVEAU A, et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease[J]. Appl Neurophysiol, 1987, 50(1/2/3/4/5/6): 344-346.
6 BEURRIER C, BIOULAC B, AUDIN J, et al. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons[J]. J Neurophysiol, 2001, 85(4): 1351-1356.
7 SHIN D S, SAMOILOVA M, COTIC M, et al. High frequency stimulation or elevated K+ depresses neuronal activity in the rat entopeduncular nucleus[J]. Neuroscience, 2007, 149(1): 68-86.
8 DOSTROVSKY J O, LEVY R, WU J P, et al. Microstimulation-induced inhibition of neuronal firing in human globus pallidus[J]. J Neurophysiol, 2000, 84(1): 570-574.
9 KURIAKOSE R, SAHA U, CASTILLO G, et al. The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease[J]. Cereb Cortex, 2010, 20(8): 1926-1936.
10 MAO Z Q, LING Z P, PAN L S, et al. Comparison of efficacy of deep brain stimulation of different targets in Parkinson's disease: a network meta-analysis[J]. Front Aging Neurosci, 2019, 11: 23.
11 FOLLETT K A, WEAVER F M, STERN M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease[J]. N Engl J Med, 2010, 362(22): 2077-2091.
12 FAN S Y, WANG K L, HU W, et al. Pallidal versus subthalamic nucleus deep brain stimulation for levodopa-induced dyskinesia[J]. Ann Clin Transl Neurol, 2020, 7(1): 59-68.
13 范世莹, 王开亮, 孟凡刚, 等. STN和GPi脑深部电刺激术对伴有异动症帕金森病的疗效比较[J]. 中华神经外科杂志, 2019, 35(10): 985-990.
13 FAN S Y, WANG K L, MENG F G, et al. Efficacy comparison of subthalamic and globus pallidus internus deep brain stimulation in Parkinson's disease with dyskinesia[J]. Chinese Journal of Neurosurgery, 2019, 35(10): 985-990.
14 CHEN T, LIN F, CAI G. Comparison of the efficacy of deep brain stimulation in different targets in improving gait in Parkinson's disease: a systematic review and Bayesian network meta-analysis[J]. Front Hum Neurosci, 2021, 15: 749722.
15 XU H, ZHENG F, KRISCHEK B, et al. Subthalamic nucleus and globus pallidus internus stimulation for the treatment of Parkinson's disease: a systematic review[J]. J Int Med Res, 2017, 45(5): 1602-1612.
16 BARBE M T, REKER P, HAMACHER S, et al. DBS of the PSA and the VIM in essential tremor: a randomized, double-blind, crossover trial[J]. Neurology, 2018, 91(6): e543-e550.
17 WONG J K, HESS C W, ALMEIDA L, et al. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes[J]. Expert Rev Neurother, 2020, 20(4): 319-331.
18 PLAHA P, GILL S S. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease[J]. Neuroreport, 2005, 16(17): 1883-1887.
19 DAYAL V, RAJABIAN A, JAHANSHAHI M, et al. Pedunculopontine nucleus deep brain stimulation for Parkinsonian disorders: a case series[J]. Stereotact Funct Neurosurg, 2021, 99(4): 287-294.
20 HUANG C Y, CHU H L, ZHANG Y, et al. Deep brain stimulation to alleviate freezing of gait and cognitive dysfunction in Parkinson's disease: update on current research and future perspectives[J]. Front Neurosci, 2018, 12: 29.
21 WANG J W, ZHANG Y Q, ZHANG X H, et al. Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after Parkinson disease: a meta-analysis of individual patient data[J]. World Neurosurg, 2017, 102: 72-78.
22 HAMANI C, LOZANO A M, MAZZONE P A M, et al. Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: surgical techniques, side effects, and postoperative imaging[J]. Stereotact Funct Neurosurg, 2016, 94(5): 307-319.
23 THEVATHASAN W, DEBU B, AZIZ T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: a clinical review[J]. Mov Disord, 2018, 33(1): 10-20.
24 BARKER A T, JALINOUS R, FREESTON I L. Non-invasive magnetic stimulation of human motor cortex[J]. Lancet, 1985, 1(8437): 1106-1107.
25 王丽娟, 邱轶慧, 聂坤, 等. 经颅磁刺激在帕金森病病理生理学研究及治疗中的应用[J]. 中华神经科杂志, 2019, 52(8): 601-606.
25 WANG L J, QIU Y H, NIE K, et al. The application prospect of transcranial magnetic stimulation in the pathophysiology research and treatment of Parkinson's disease[J]. Chinese Journal of Neurology, 2019, 52(8): 601-606.
26 PASCUAL-LEONE A, VALLS-SOLé J, BRASIL-NETO J P, et al. Akinesia in Parkinson's disease. Ⅱ. Effects of subthreshold repetitive transcranial motor cortex stimulation[J]. Neurology, 1994, 44(5): 892-898.
27 LEE J Y, KIM S H, KO A R, et al. Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson's disease[J]. Brain Res, 2013, 1537: 290-302.
28 CHUNG C L, MAK M K, HALLETT M. Transcranial magnetic stimulation promotes gait training in Parkinson disease[J]. Ann Neurol, 2020, 88(5): 933-945.
29 FRICKE C, DUESMANN C, WOOST T B, et al. Dual-site transcranial magnetic stimulation for the treatment of Parkinson's disease[J]. Front Neurol, 2019, 10: 174.
30 KHEDR E M, MOHAMED K O, SOLIMAN R K, et al. The effect of high-frequency repetitive transcranial magnetic stimulation on advancing Parkinson's disease with dysphagia: double blind randomized clinical trial[J]. Neurorehabil Neural Repair, 2019, 33(6): 442-452.
31 王丽娟, 聂坤, 高玉元, 等. 中国帕金森病重复经颅磁刺激治疗指南[J]. 中国神经精神疾病杂志, 2021, 47(10): 577-585.
31 WANG L J, NIE K, GAO Y Y, et al. Chinese guidelines for the treatment of repetitive transcranial magnetic stimulation in Parkinson's disease[J]. Chinese Journal of Nervous and Mental Diseases, 2021, 47(10): 577-585.
32 SROVNALOVA H, MARECEK R, KUBIKOVA R, et al. The role of the right dorsolateral prefrontal cortex in the Tower of London task performance: repetitive transcranial magnetic stimulation study in patients with Parkinson's disease[J]. Exp Brain Res, 2012, 223(2): 251-257.
33 SROVNALOVA H, MARECEK R, REKTOROVA I. The role of the inferior frontal gyri in cognitive processing of patients with Parkinson's disease: a pilot rTMS study[J]. Mov Disord, 2011, 26(8): 1545-1548.
34 MARCHESI G, ALBANESE G A, FERRAZZOLI D, et al. Effects of rTMS and intensive rehabilitation in Parkinson's disease on learning and retention[J]. IEEE Int Conf Rehabil Robot, 2019, 2019: 1260-1265.
35 NARDONE R, H?LLER Y, BRIGO F, et al. Transcranial magnetic stimulation and sleep disorders: pathophysiologic insights[J]. Sleep Med, 2013, 14(11): 1047-1058.
36 HAMEED M Q, DHAMNE S C, GERSNER R, et al. Transcranial magnetic and direct current stimulation in children[J]. Curr Neurol Neurosci Rep, 2017, 17(2): 11.
37 KUNZE T, HUNOLD A, HAUEISEN J, et al. Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study[J]. Neuroimage, 2016, 140: 174-187.
38 NITSCHE M A, PAULUS W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527(Pt 3): 633-639.
39 NITSCHE M A, NITSCHE M S, KLEIN C C, et al. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex[J]. Clin Neurophysiol, 2003, 114(4): 600-604.
40 LANG N, SIEBNER H R, WARD N S, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?[J]. Eur J Neurosci, 2005, 22(2): 495-504.
41 STAGG C J, NITSCHE M A. Physiological basis of transcranial direct current stimulation[J]. Neuroscientist, 2011, 17(1): 37-53.
42 POL F, SALEHINEJAD M A, BAHARLOUEI H, et al. The effects of transcranial direct current stimulation on gait in patients with Parkinson's disease: a systematic review[J]. Transl Neurodegener, 2021, 10(1): 22.
43 DAGAN M, HERMAN T, HARRISON R, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease[J]. Mov Disord, 2018, 33(4): 642-646.
44 LEE S A, KIM M K. The effect of transcranial direct current stimulation combined with visual cueing training on motor function, balance, and gait ability of patients with Parkinson's disease[J]. Medicina (Kaunas), 2021, 57(11): 1146.
45 FERRUCCI R, CORTESE F, BIANCHI M, et al. Cerebellar and motor cortical transcranial stimulation decrease levodopa-induced dyskinesias in Parkinson's disease[J]. Cerebellum, 2016, 15(1): 43-47.
46 BENNINGER D H, LOMAREV M, LOPEZ G, et al. Transcranial direct current stimulation for the treatment of Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2010, 81(10): 1105-1111.
47 CAMMISULI D M, CIGNONI F, CERAVOLO R, et al. Transcranial direct current stimulation (tDCS) as a useful rehabilitation strategy to improve cognition in patients with Alzheimer's disease and Parkinson's disease: an updated systematic review of randomized controlled trials[J]. Front Neurol, 2021, 12: 798191.
48 DORUK D, GRAY Z, BRAVO G L, et al. Effects of tDCS on executive function in Parkinson's disease[J]. Neurosci Lett, 2014, 582: 27-31.
49 张靖, 贾婕, 吴小云, 等. 经颅直流电刺激治疗帕金森病伴快速眼动睡眠行为障碍的临床疗效[J]. 医学综述, 2022, 28(11): 2266-2270.
49 ZHANG J, JIA J, WU X Y, et al. Clinical analysis of transcranial direct current stimulation in treatment of Parkinson's disease with rapid eye-movement sleep behavior disorder[J]. Medical Recapitulate, 2022, 28(11): 2266-2270.
50 FOROGH B, RAFIEI M, ARBABI A, et al. Repeated sessions of transcranial direct current stimulation evaluation on fatigue and daytime sleepiness in Parkinson's disease[J]. Neurol Sci, 2017, 38(2): 249-254.
51 SERVICK K. Hope grows for targeting the brain with ultrasound[J]. Science, 2020, 368(6498): 1408-1409.
52 NAOR O, KRUPA S, SHOHAM S. Ultrasonic neuromodulation[J]. J Neural Eng, 2016, 13(3): 031003.
53 O'BRIEN W D Jr. Ultrasound-biophysics mechanisms[J]. Prog Biophys Mol Biol, 2007, 93(1/2/3): 212-255.
54 DALECKI D. Mechanical bioeffects of ultrasound[J]. Annu Rev Biomed Eng, 2004, 6: 229-248.
55 BAEK H, PAHK K J, KIM H. A review of low-intensity focused ultrasound for neuromodulation[J]. Biomed Eng Lett, 2017, 7(2): 135-142.
56 KRASOVITSKI B, FRENKEL V, SHOHAM S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects[J]. Proc Natl Acad Sci U S A, 2011, 108(8): 3258-3263.
57 KUBANEK J. Neuromodulation with transcranial focused ultrasound[J]. Neurosurg Focus, 2018, 44(2): E14.
58 SPIVAK N M, KUHN T P. Variations in targeting techniques of focused ultrasound for use in neuromodulation[J]. Brain Stimul, 2019, 12(6): 1595-1596.
59 DI BIASE L, FALATO E, DI LAZZARO V. Transcranial focused ultrasound (tFUS) and transcranial unfocused ultrasound (tUS) neuromodulation: from theoretical principles to stimulation practices[J]. Front Neurol, 2019, 10: 549.
60 SCHLESINGER I, ERAN A, SINAI A, et al. MRI guided focused ultrasound thalamotomy for moderate-to-severe tremor in Parkinson's disease[J]. Parkinsons Dis, 2015, 2015: 219149.
61 ZAAROOR M, SINAI A, GOLDSHER D, et al. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson's disease and essential tremor cases[J]. J Neurosurg, 2018, 128(1): 202-210.
62 MARTíNEZ-FERNáNDEZ R, Má?EZ-MIRó J U, RODRíGUEZ-ROJAS R, et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson's disease[J]. N Engl J Med, 2020, 383(26): 2501-2513.
63 CHEN J C, LU M K, CHEN C M, et al. Stepwise dual-target magnetic resonance-guided focused ultrasound in tremor-dominant Parkinson disease: a feasibility study[J]. World Neurosurg, 2023, 171: e464-e470.
64 ZHOU H, NIU L L, XIA X X, et al. Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson's disease[J]. IEEE Trans Biomed Eng, 2019, 66(11): 3006-3013.
65 XU T, LU X X, PENG D H, et al. Ultrasonic stimulation of the brain to enhance the release of dopamine: a potential novel treatment for Parkinson's disease[J]. Ultrason Sonochem, 2020, 63: 104955.
66 SONG W S, SUNG C Y, KE C H, et al. Anti-inflammatory and neuroprotective effects of transcranial ultrasound stimulation on Parkinson's disease[J]. Ultrasound Med Biol, 2022, 48(2): 265-274.
文章导航

/