收稿日期: 2023-10-18
录用日期: 2024-01-31
网络出版日期: 2024-03-28
基金资助
上海市卫生健康委员会卫生行业临床研究专项(20224Y0234);上海市嘉定区江桥医院科技创新项目(202228B)
Study on the mechanism of trimethylamine oxide damaging cardiac function in mice with hypertrophic cardiomyopathy
Received date: 2023-10-18
Accepted date: 2024-01-31
Online published: 2024-03-28
Supported by
Health Industry Clinical Research Project of Shanghai Municipal Health Commission(20224Y0234);Science and Technology Innovation Project of Shanghai Jiading District Jiangqiao Hospital(202228B)
目的·探讨氧化三甲胺(trimethylamine oxide,TMAO)对肥厚型心肌病(hypertrophic cardiomyopathy,HCM)小鼠心功能的影响和潜在分子机制。方法·以肌球蛋白重链6(myosin heavy chain 6,Myh6) c.1211G>A(p.R404Q+/-)点突变的小鼠(HCM小鼠)为动物模型。根据分别向饲料中补充TMAO、TMAO抑制剂碘甲基胆碱(iodomethylcholine,IMC)进行喂养,将野生型(wild type,WT)小鼠、HCM小鼠分为WT组、HCM组(HCM-1组、HCM-2组)、WT+TMAO组、HCM+TMAO组及HCM+IMC组。采用超声心动图评估上述小鼠的左心室短轴缩短(left ventricular fraction shortening,FS)率和左心室后壁厚度(left ventricular posterior wall thickness,LVPW)。采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)检测HCM-1组和WT组小鼠血清TMAO浓度。采用苏木精-伊红染色(hematoxylin and eosin staining,HE staining,HE染色)评估小鼠心肌细胞排列规整度。采用马松(Masson)染色评估小鼠心肌纤维化比例。使用心肌蛋白激酶A(protein kinase A,PKA)试剂盒检测小鼠心肌组织PKA活性。采用蛋白质印迹法(Western blotting)检测小鼠心肌组织兰尼碱受体2(ryanodine receptor 2,RyR2)及p-RyR2(S2808)的表达。结果·超声心动图的结果显示,12月龄时WT+TMAO组、HCM+TMAO组小鼠的FS率分别低于对应的WT组、HCM-1组(均P<0.05);HCM+TMAO组小鼠的LVPW高于HCM-1组,而HCM+IMC组小鼠的LVPW低于HCM-2组(均P<0.05)。ELISA结果显示,HCM-1组小鼠血清中TMAO浓度高于WT组(P<0.05)。HE染色和Masson染色的结果显示,HCM+TMAO组小鼠相较于HCM-1组的心肌细胞排列规整程度较低、纤维化比例较高,而HCM+IMC组小鼠相较于HCM-2组则相反(均P<0.05)。PKA的检测结果显示,经TMAO饲养后,WT+TMAO组、HCM+TMAO组小鼠的心肌组织PKA活性均有增加,而经IMC饲养的HCM+IMC组小鼠的心肌组织PKA活性则有下降(均P<0.05)。Western blotting的结果显示,经TMAO饲养后,WT+TMAO组、HCM+TMAO组小鼠的心肌组织中p-RyR2(S2808)表达升高,经IMC饲养的HCM+IMC组小鼠的p-RyR2(S2808)表达则降低(均P<0.05);而RyR2的表达在各组间未见差异。结论·TMAO可增加心肌PKA活性,诱导RyR2色氨酸2808位点发生磷酸化,能够引起HCM小鼠心室重构并损害其心功能。
靳步 , 陈汉章 , 徐浒东 , 陈婉玉 , 袁颖 , 赵婷婷 , 黄晓蕾 , 何佳璐 , 于红 . 氧化三甲胺损害肥厚型心肌病小鼠心功能的机制研究[J]. 上海交通大学学报(医学版), 2024 , 44(3) : 325 -333 . DOI: 10.3969/j.issn.1674-8115.2024.03.004
Objective ·To investigate the effects of trimethylamine oxide (TMAO) on cardiac function in mice with hypertrophic cardiomyopathy (HCM) and its potential molecular mechanism. Methods ·Mice with myosin heavy chain 6 (Myh6) c.1211G>A (p.R404Q+/-) point mutation were used as the animal model. According to dietary supplementation of TMAO and TMAO inhibitor iodomethylcholine (IMC), the wild type (WT) mice and HCM mice were divided into WT group, HCM group (HCM-1 group, HCM-2 group), WT+TMAO group, HCM+TMAO group and HCM+IMC group, respectively. Left ventricular fraction shortening (FS) and left ventricular posterior wall thickness (LVPW) were assessed by echocardiography in all mice. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum TMAO concentration of mice in the HCM-1 group and WT group. The regularity of myocardial cell arrangement of mice was evaluated by hematoxylin and eosin staining (HE staining). The proportion of myocardial fibrosis was evaluated by Masson staining. The activity of protein kinase A (PKA) in mouse myocardial tissue was detected by PKA kit. The expression of ryanodine receptor 2 (RyR2) and p-RyR2(S2808) in mouse myocardial tissue was detected by Western blotting. Results ·The results of echocardiography showed that at 12 months of age, the FS of mice in the WT+TMAO group and HCM+TMAO group were lower than those in the corresponding WT group and HCM-1 group, respectively (P<0.05). The LVPW of mice in the HCM+TMAO group was higher than that in the HCM-1 group, while the LVPW of mice in the HCM+IMC group was lower than that in the HCM-2 group (P<0.05). ELISA results showed that the serum TMAO concentration of mice in the HCM-1 group was higher than that in the WT mice (P<0.05). The results of HE staining and Masson staining showed that the HCM+TMAO group had a lower degree of regular arrangement of cardiomyocytes and a higher proportion of fibrosis than the HCM-1 group, while the HCM+IMC group had a higher degree of regular arrangement of cardiomyocytes and a lower proportion of fibrosis than the HCM-2 group (P<0.05). The results of PKA assay showed that the PKA activity in the myocardial tissue of mice in the WT+TMAO group and HCM+TMAO group increased after TMAO treatment, while the PKA activity in the myocardial tissue of mice in the HCM+IMC group decreased (P<0.05). Western blotting results showed that the expression of p-RyR2(S2808) in the myocardial tissue of the WT+TMAO group and HCM+TMAO group mice increased, while it was decreased in the HCM+IMC group mice (P<0.05); however, there was no difference in RyR2 expression among the groups. Conclusion ·TMAO can increase the activity of PKA and induce the phosphorylation of RyR2 at S2808, which can cause ventricular remodeling and impair cardiac function in HCM mice.
1 | MARON B J, DESAI M Y, NISHIMURA R A, et al. Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2022, 79(4): 372-389. |
2 | OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2020, 76(25): 3022-3055. |
3 | MARON B J, GARDIN J M, FLACK J M, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study[J]. Circulation, 1995, 92(4): 785-789. |
4 | HO C Y, CHARRON P, RICHARD P, et al. Genetic advances in sarcomeric cardiomyopathies: state of the art[J]. Cardiovasc Res, 2015, 105(4): 397-408. |
5 | TEEKAKIRIKUL P, ZHU W J, HUANG H C, et al. Hypertrophic cardiomyopathy: an overview of genetics and management[J]. Biomolecules, 2019, 9(12): 878. |
6 | RICHARDS E M, LI J, STEVENS B R, et al. Gut microbiome and neuroinflammation in hypertension[J]. Circ Res, 2022, 130(3): 401-417. |
7 | CANDELLI M, FRANZA L, CIANCI R, et al. The interplay between Helicobacter pylori and gut microbiota in non-gastrointestinal disorders: a special focus on atherosclerosis[J]. Int J Mol Sci, 2023, 24(24): 17520. |
8 | TANG W H W, NEMET I, LI X S, et al. Prognostic value of gut microbe-generated metabolite phenylacetylglutamine in patients with heart failure[J]. Eur J Heart Fail. 2023. doi: 10.1002/ejhf.3111. |
9 | ORGAN C L, OTSUKA H, BHUSHAN S, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure[J]. Circ Heart Fail, 2016, 9(1): e002314. |
10 | SHIH D M, WANG Z N, LEE R, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis[J]. J Lipid Res, 2015, 56(1): 22-37. |
11 | LI Z H, WU Z Y, YAN J Y, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J]. Lab Invest, 2019, 99(3): 346-357. |
12 | GREEN E M, WAKIMOTO H, ANDERSON R L, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice[J]. Science, 2016, 351(6273): 617-621. |
13 | RYU Y, JIN L, KEE H J, et al. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity[J]. Sci Rep, 2016, 6: 34790. |
14 | TANG W H, WANG Z N, FAN Y Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis[J]. J Am Coll Cardiol, 2014, 64(18): 1908-1914. |
15 | DOBREV D, WEHRENS X H T. Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease[J]. Circ Res, 2014, 114(8): 1311-1319; discussion1319. |
16 | CHANDRA M, RUNDELL V L, TARDIFF J C, et al. Ca(2+) activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T[J]. Am J Physiol Heart Circ Physiol, 2001, 280(2): H705-H713. |
17 | NAJAFI A, SCHLOSSAREK S, VAN DEEL E D, et al. Sexual dimorphic response to exercise in hypertrophic cardiomyopathy-associated MYBPC3-targeted knock-in mice[J]. Pflugers Arch, 2015, 467(6): 1303-1317. |
18 | HOUSER S R. Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias[J]. Circ Res, 2014, 114(8): 1320-1327; discussion1327. |
19 | LEHNART S E, WEHRENS X H T, REIKEN S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias[J]. Cell, 2005, 123(1): 25-35. |
20 | BETOCCHI S, HESS O M, LOSI M A, et al. Regional left ventricular mechanics in hypertrophic cardiomyopathy[J]. Circulation, 1993, 88(5 Pt 1): 2206-2214. |
21 | MARAS D, CHUNG R, DUNCAN A, et al. Patterns of cardiac dysfunction coinciding with exertional breathlessness in hypertrophic cardiomyopathy[J]. Int J Cardiol, 2013, 170(2): 233-238. |
/
〈 |
|
〉 |