收稿日期: 2023-09-21
录用日期: 2024-01-04
网络出版日期: 2024-03-28
基金资助
国家卫生和计划生育委员会财政项目(1710908)
Relationship of screen time and dietary behaviors with depressive symptoms in junior high school students in five provinces in China
Received date: 2023-09-21
Accepted date: 2024-01-04
Online published: 2024-03-28
Supported by
Financial Project of National Health and Family Planning Commission(1710908)
目的·了解中国5省初中生视屏时间和饮食行为与抑郁症状的关联。方法·采用分层随机整群抽样方法,对中国东部地区的浙江、广东,中部地区的江西,西部地区的四川、贵州共5省1 067名初中生进行问卷调查,包括一般人口学特征、健康行为情况、饮食行为情况、抑郁情况。采用单因素分析比较不同人口学特征的初中生的抑郁症状报告率、每日视屏时间和饮食行为,采用Logistic回归分析每日视屏时间和饮食行为与抑郁症状的关联,并分析前两者的交互作用。结果·中国5省初中生抑郁症状报告率为12.9%,西部地区、非独生子女、每周零花钱超过100元、有过吸烟行为、有过饮酒行为、每日视屏时间≥2 h、有不健康饮食行为的初中生抑郁症状报告率较高,差异均有统计学意义(均P<0.05)。15.2%初中生每日视屏时间≥2 h;调整混杂因素后,与每日视屏时间<2 h组相比,≥2 h组抑郁症状报告率更高(OR=1.89,95%CI 1.22~2.95)。29.5%的初中生有不健康饮食行为;调整混杂因素后,与健康饮食行为组相比,不健康饮食行为组抑郁症状报告率更高(OR=2.16,95%CI 1.47~3.19)。6.4%的初中生每日视屏时间≥2 h且有不健康饮食行为;调整混杂因素后,这部分学生比每日视屏时间<2 h且饮食行为健康学生抑郁症状报告率更高(OR=4.26,95%CI 2.24~7.56)。调整混杂因素后,每日视屏时间与饮食行为的交互作用分析结果显示,两者存在相加交互作用,超额相对危险度(relative excess risk due to interaction,RERI)为1.21(95%CI 1.02~1.51),交互作用归因比(attributable proportion due to interaction,AP)为0.19(95%CI 0.13~0.31),交互作用指数(synergy index,S)为1.35(95%CI 1.12~1.69)。结论·视屏时间过长且有不健康饮食行为的中国初中生更容易出现抑郁症状,且两者对抑郁症状有相加交互作用。
杨瑞君 , 吕书红 , 刘志业 , 张新 , 刘志浩 . 中国5省初中生视屏时间和饮食行为与抑郁症状的关联[J]. 上海交通大学学报(医学版), 2024 , 44(3) : 358 -364 . DOI: 10.3969/j.issn.1674-8115.2024.03.008
Objective ·To explore the relationship of screen time and dietary behaviors with depressive symptoms in junior high school students in 5 provinces in China. Methods ·A total of 1 067 junior high school students were selected from Zhejiang and Guangdong in the eastern region, Jiangxi in the central region, Sichuan and Guizhou in the western region of China by using stratified random cluster sampling method for a questionnaire survey, which included general demographic characteristics, health behaviors, diatery behaviors, and depressive symptoms. Univariate analysis was used to analyze the report rates of depressive symptoms, daily screen time and dietary behaviors of the students with variant demographic characteristics, and Logistic regression analysis was used to analyze the relationship of daily screen time and dietary behaviors with depressive symptoms and the interaction effects as well. Results ·The report rate of depressive symptoms was 12.9% in the junior high school students in 5 provinces. The students who were in the western region, were not only children, had a weekly allowance of over 100 yuan, had smoked or consumed alcohol, had daily screen time≥2 h, or had unhealthy dietary behaviors, had higher reporting rates of depressive symptoms (P<0.05). A total of 15.2% students had daily screen time≥2 h, who had a higher reporting rate of depressive symptoms than the others after the confounding factors being adjusted (OR=1.89, 95%CI 1.22?2.95). A total of 29.5% of students had unhealthy dietary behaviors, who had a higher reporting rate of depressive symptoms than the others after the confounding factors being adjusted (OR=2.16, 95%CI 1.47?3.19). A total of 6.4% of students had both daily screen time≥2 h and unhealthy dietary behaviors, who had a higher reporting rate of depressive symptoms than the students having daily screen time<2 h and healthy dietary behaviors after the confounding factors being adjusted (OR=4.26, 95%CI 2.24?7.56). After adjusting for the confounding factors, the analysis of the interaction between daily screen time and dietary behaviors showed an additive interaction with the relative excess risk due to interaction (RERI) of 1.21 (95%CI 1.02?1.51), the attributable proportion due to interaction (AP) of 0.19 (95%CI 0.13?0.31), and the synergy index (S) of 1.35 (95%CI 1.12?1.69). Conclusion ·The junior high school students with both long screen time and unhealthy dietary behaviors are more likely to suffer from depressive symptoms in China; long screen time and unhealthy dietary behaviors have an additive interactive effect on depressive symptoms.
Key words: middle school student; screen time; dietary behavior; depressive symptom
1 | 刘福荣, 宋晓琴, 尚小平, 等. 中学生抑郁症状检出率的meta分析[J]. 中国心理卫生杂志, 2020, 34(2): 123-128. |
1 | LIU F R, SONG X Q, SHANG X P, et al. A meta-analysis of detection rate of depression symptoms among middle school students[J]. Chinese Mental Health Journal, 2020, 34(2):123-128. |
2 | CAO X J, HUANG Y X, ZHU P, et al. The impacts of maternal separation experience and its pattern on depression and dysfunctional attitude in middle school students in rural China[J]. Int J Soc Psychiatry, 2020, 66(2): 188-197. |
3 | YE S Y, CHEN L J, WANG Q N, et al. Correlates of screen time among 8?19-year-old students in China[J]. BMC Public Health, 2018, 18(1): 467. |
4 | 黄玮浩, 陆爽, 杨舒仪, 等. 广州市城区中学生视屏时间与饮食行为关联性[J]. 中国学校卫生, 2020, 41(4): 528-530, 534. |
4 | HUANG W H, LU S, YANG S Y, et al. Association between screen time and dietary behaviors among urban middle school students in Guangzhou[J]. Chinese Journal of School Health, 2020, 41(4): 528-530, 534. |
5 | RONG S, SNETSELAAR L G, XU G F, et al. Association of skipping breakfast with cardiovascular and all-cause mortality[J]. J Am Coll Cardiol, 2019, 73(16): 2025-2032. |
6 | 孙艺, 刘伟佳, 熊莉华, 等. 广州市中学生中高强度身体活动视屏时间与抑郁症状相关性[J]. 中国学校卫生, 2021, 42(10): 1499-1503. |
6 | SUN Y, LIU W J, XIONG L H, et al. Relationship between moderate to vigorous physical activity, screen time and depressive symptoms among middle school students in Guangzhou[J]. Chinese Journal of School Health, 2021, 42(10): 1499-1503. |
7 | 顾文馨, 谭银亮, 陆唯怡, 等. 上海市青少年饮食行为现状以及抑郁焦虑情绪的影响[J]. 中国学校卫生, 2022, 43(6): 864-868. |
7 | GU W X, TAN Y L, LU W Y, et al. Prevalence and influence of depression and anxiety on dietary behaviors among adolescents in Shanghai[J]. Chinese Journal of School Health, 2022, 43(6): 864-868. |
8 | SARITAS S C, ERCI B. Predictors of adolescent health risk behaviors[J]. Holist Nurs Pract, 2014, 28(3): 208-216. |
9 | 阳秀英, 李新影. 青少年超重、肥胖与抑郁和行为问题的关系[J]. 中国心理卫生杂志, 2016, 30(7): 519-526. |
9 | YANG X Y, LI X Y. Relations of overweight and obesity to depression and externalizing behavior in adolescents[J]. Chinese Mental Health Journal, 2016, 30(7): 519-526. |
10 | 张云婷, 马生霞, 陈畅, 等. 中国儿童青少年身体活动指南[J]. 中国循证儿科杂志, 2017, 12(6): 401-409. |
10 | ZHANG Y T, MA S X, CHEN C, et al. Physical activity guidelines for children and adolescents in China[J]. Chinese Journal of Evidence Based Pediatrics, 2017, 12(6): 401-409. |
11 | 张娜, 朱文丽, 张曼, 等. 《中国学龄儿童膳食指南(2022)》解读[J]. 中国学校卫生, 2022, 43(6): 805-808. |
11 | ZHANG N, ZHU W L, ZHANG M, et al. Interpretation on Dietary Guidelines for Chinese School-aged Children (2022) [J]. Chinese Journal of School Health, 2022, 43(6): 805-808. |
12 | 梁晓峰. 2014中国青少年烟草调查报告[M]. 北京: 人民卫生出版社, 2014: 5-9. |
12 | LIANG X F. Chinese youth tobacco survey report 2014[M]. Beijing: People′s Medical Publishing House, 2014: 5-9. |
13 | KANN L, MCMANUS T, HARRIS W A, et al. Youth risk behavior surveillance: United States, 2017[J]. MMWR Surveill Summ, 2018, 67(8): 1-114. |
14 | KROENKE K, SPITZER R L, WILLIAMS J B W, et al. The patient health questionnaire somatic, anxiety, and depressive symptom scales: a systematic review[J]. Gen Hosp Psychiatry, 2010, 32(4): 345-359. |
15 | ANDERSSON T, ALFREDSSON L, K?LLBERG H, et al. Calculating measures of biological interaction[J]. Eur J Epidemiol, 2005, 20(7): 575-579. |
16 | 吴静, 陈国平, 王志强, 等. 安徽省中学生遭受校园欺凌和睡眠时间与抑郁症状的关联[J]. 中国学校卫生, 2022, 43(10): 1547-1550. |
16 | WU J, CHEN G P, WANG Z Q, et al. Relationship between school bullying, sleep duration and depressive symptoms among middle school students in Anhui Province[J]. Chinese Journal of School Health, 2022, 43(10): 1547-1550. |
17 | 孙力菁, 罗春燕, 周月芳, 等. 上海市中学生抑郁症状和网络成瘾行为的相关性[J]. 中国学校卫生, 2019, 40(3): 445-447. |
17 | SUN L J, LUO C Y, ZHOU Y F, et al. Correlation between depressive symptoms and internet addiction behavior among middle school students in Shanghai[J]. Chinese Journal of School Health, 2019, 40(3): 445-447. |
18 | 勉丽娜, 陈辉, 韩霄, 等. 北京市东城区中学生抑郁状况及影响因素调查研究[J]. 中国预防医学杂志, 2019, 20(8): 724-728. |
18 | MIAN L N, CHEN H, HAN X, et al. Investigation on depression status and influential factors of middle school students in dongcheng district of Beijing[J]. Chinese Preventive Medicine, 2019, 20(8): 724-728 |
19 | 车贝贝, 高晶蓉, 陈德, 等. 上海市中学生抑郁症状流行现状及行为因素对其影响分析[J]. 中国健康教育, 2021, 37(1): 27-32. |
19 | CHE B B, GAO J R, CHEN D, et al. Analysis on the prevalence of depressive symptoms and its related behavioral factors among middle school students in Shanghai[J]. Chinese Journal Health Education, 2021, 37(1): 27-32. |
20 | FLUHARTY M, TAYLOR A E, GRABSKI M, et al. The association of cigarette smoking with depression and anxiety: a systematic review[J]. Nicotine Tob Res, 2017, 19(1): 3-13. |
21 | STIGLIC N, VINER R M. Effects of screentime on the health and well-being of children and adolescents: a systematic review of reviews[J]. BMJ Open, 2019, 9(1): e023191. |
22 | CAO H, QIAN Q W, WENG T T, et al. Screen time, physical activity and mental health among urban adolescents in China[J]. Prev Med, 2011, 53(4/5): 316-320. |
23 | SHQAIR A Q, PAULI L A, COSTA V P P, et al. Screen time, dietary patterns and intake of potentially cariogenic food in children: a systematic review[J]. J Dent, 2019, 86: 17-26. |
24 | HANSEN M H, LAIGAARD P P, OLSEN E M, et al. Low physical activity and higher use of screen devices are associated with myopia at the age of 16?17 years in the CCC2000 Eye Study[J]. Acta Ophthalmol, 2020, 98(3): 315-321. |
25 | 马莹, 苏彬彬, 霍家康, 等. 全国7省父母视屏时间和限制行为对6~17岁儿童青少年视屏时间的联合影响研究[J]. 中国儿童保健杂志, 2021, 29(10): 1063-1067. |
25 | MA Y, SU B B, HUO J K, et al. Study on the combined influence of parental screen time and restrictive behaviors on screen time of children and adolescents aged 6 to 17 years from 7 provinces in China[J]. Chinese Journal of Child Health Care, 2021, 29(10): 1063-1067. |
26 | XU H L, GUO J C, WAN Y H, et al. Association between screen time, fast foods, sugar-sweetened beverages and depressive symptoms in Chinese adolescents[J]. Front Psychiatry, 2020, 11: 458. |
27 | OBERSTE M, MEDELE M, JAVELLE F, et al. Physical activity for the treatment of adolescent depression: a systematic review and meta-analysis[J]. Front Physiol, 2020, 11: 185. |
/
〈 |
|
〉 |