收稿日期: 2023-10-25
录用日期: 2024-03-05
网络出版日期: 2024-05-28
Functions of SNARE complex in glial cells and its relationship with the development of depressive disorder
Received date: 2023-10-25
Accepted date: 2024-03-05
Online published: 2024-05-28
抑郁障碍是现代人类致残和死亡的一个常见原因,部分患者对现有的抗抑郁障碍药物并不敏感,复发率极高。现有的抗抑郁障碍药物存在许多问题,迫切需要找到一种针对多个靶点的新型抗抑郁药。近年来的研究发现,可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(soluble N-ethylmaleimide-sensitive factor attachment protein receptor,SNARE)复合体与抑郁障碍发生及进展密切相关。该文总结和归纳了胶质细胞内SNARE复合体在抑郁障碍发生过程中的潜在作用机制,并对相关研究进行综述,以期为临床上开发新型的抗抑郁障碍药物提供新的思路。
关键词: 抑郁障碍; 可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体复合体; 胶质细胞
谷涓华 , 焦扬 , 鲁琳 , 王琳琳 . 胶质细胞内SNARE复合体功能及其与抑郁障碍发生的关系[J]. 上海交通大学学报(医学版), 2024 , 44(5) : 653 -657 . DOI: 10.3969/j.issn.1674-8115.2024.05.015
Depression is a common cause of human disability and death. Some patients are not sensitive to antidepressants, and also the recurrence rate is very high. Unfortunately, there are many problems with existing antidepressants. So, it is urgent to find a new antidepressant aiming at multiple targets. Recently, researchers have found that soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is closely related to the progression of depression. This review discusses the potential mechanisms of the SNARE complex in glial cells, and hopes to contribute to the understanding of depression and provide new ideas for clinical development of novel antidepressant drugs.
1 | CHOI K W, KIM Y K, JEON H J. Comorbid anxiety and depression: clinical and conceptual consideration and transdiagnostic treatment[J]. Adv Exp Med Biol, 2020, 1191: 219-235. |
2 | TUNG Y J, LO K K H, HO R C M, et al. Prevalence of depression among nursing students: a systematic review and meta-analysis[J]. Nurse Educ Today, 2018, 63: 119-129. |
3 | QIN X Z, WANG S Y, Hsieh C R. The prevalence of depression and depressive symptoms among adults in China: estimation based on a national household survey[J]. Chin Econom Rev, 2018, 51(2018): 271-282. |
4 | ZHANG Y, HUGHSON F M. Chaperoning SNARE folding and assembly[J]. Annu Rev Biochem, 2021, 90: 581-603. |
5 | KHVOTCHEV M, SOLOVIEV M. SNARE modulators and SNARE mimetic peptides[J]. Biomolecules, 2022, 12(12): 1779. |
6 | ZHOU B T, ZHU Z Q, RANSOM B R, et al. Oligodendrocyte lineage cells and depression[J]. Mol Psychiatry, 2021, 26: 103-117. |
7 | JIA X N, GAO Z H, HU H L. Microglia in depression: current perspectives[J]. Sci China Life Sci, 2021, 64(6): 911-925. |
8 | MANGO D, LEDONNE A. Updates on the physiopathology of group Ⅰ metabotropic glutamate receptors (mGluRⅠ)-dependent long-term depression[J]. Cells, 2023, 12 (12): 1588. |
9 | YOON S, IQBAL H, KIM S M, et al. Phytochemicals that act on synaptic plasticity as potential prophylaxis against stress-induced depressive disorder[J]. Biomol Ther (Seoul), 2023, 31(2): 148-160. |
10 | BAGWE P V, DESHPANDE R D, JUHASZ G, et al. Uncovering the significance of STEP61 in Alzheimer′s disease: structure, substrates, and interactome[J]. Cell Mol Neurobiol, 2023, 43(7): 3099-3113. |
11 | S?LLNER T, WHITEHEART S W, BRUNNER M, et al. SNAP receptors implicated in vesicle targeting and fusion[J]. Nature, 1993, 362: 318-324. |
12 | MISURA K M S, SCHELLER R H, WEIS W I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex[J]. Nature, 2000, 404: 355-362. |
13 | WARNER H, MAHAJAN S, VAN DEN BOGAART G. Rerouting trafficking circuits through posttranslational SNARE modifications[J]. J Cell Sci, 2022, 135(16): jcs260112. |
14 | PARLATI F, MCNEW J A, FUKUDA R, et al. Topological restriction of SNARE-dependent membrane fusion[J]. Nature, 2000, 407: 194-198. |
15 | CHERNOMORDIK L V, KOZLOV M M. Mechanics of membrane fusion[J]. Nat Struct Mol Biol, 2008, 15: 675-683. |
16 | SüDHOF T C, ROTHMAN J E. Membrane fusion: grappling with SNARE and SM proteins[J]. Science, 2009, 323(5913): 474-477. |
17 | BRUNGER A T, LEITZ J, ZHOU Q, et al. Ca2+-triggered synaptic vesicle fusion initiated by release of inhibition[J]. Trends Cell Biol, 2018, 28(8): 631-645. |
18 | WEI Z, WEI M, YANG X, et al. Synaptic secretion and beyond: targeting synapse and neurotransmitters to treat neurodegenerative diseases[J]. Oxid Med Cell Longev, 2022, 2022: 9176923. |
19 | ITAKURA E, KISHI-ITAKURA C, MIZUSHIMA N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes[J]. Cell, 2012, 151(6): 1256-1269. |
20 | BOOMS A, COETZEE G A. Functions of intracellular alpha-synuclein in microglia: implications for Parkinson′s disease risk[J]. Front Cell Neurosci, 2021, 15: 759571. |
21 | AYALEW M, LE-NICULESCU H, LEVEY D F, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction[J]. Mol Psychiatry, 2012, 17(9): 887-905. |
22 | KATAOKA M, YAMAMORI S, SUZUKI E, et al. A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse[J]. PLoS One, 2011, 6(9): e25158. |
23 | DURIC V, BANASR M, STOCKMEIER C A, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects[J]. Int J Neuropsychopharmacol, 2013, 16(1): 69-82. |
24 | LEUNG E, LAU E W, LIANG A D, et al. Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies[J]. Mol Psychiatry, 2022, 27: 1362-1372. |
25 | NAJERA K, FAGAN B M, THOMPSON P M. SNAP-25 in major psychiatric disorders: a review[J]. Neuroscience, 2019, 420: 79-85. |
26 | MALKI K, KEERS R, TOSTO M G, et al. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder[J]. BMC Med, 2014, 12: 73. |
27 | GAO Y, BEZCHLIBNYK Y B, SUN X, et al. Effects of restraint stress on the expression of proteins involved in synaptic vesicle exocytosis in the hippocampus[J]. Neuroscience, 2006, 141(3): 1139-1148. |
28 | GUO L, ZHU Z, WANG G, et al. MicroRNA-15b contributes to depression-like behavior in mice by affecting synaptic protein levels and function in the nucleus accumbens[J]. J Biol Chem, 2020, 295(20): 6831-6848. |
29 | BIELER M, HUSSAIN S, DAALAND E S B, et al. Changes in concentrations of NMDA receptor subunit GluN2B, Arc and syntaxin-1 in dorsal hippocampus Schaffer collateral synapses in a rat learned helplessness model of depression[J]. J Comp Neurol, 2021, 529(12): 3194-3205. |
30 | BONANNO G, GIAMBELLI R, RAITERI L, et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus[J]. J Neurosci, 2005, 25(13): 3270-3279. |
31 | ARAYA-CALLíS C, HIEMKE C, ABUMARIA N, et al. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus[J]. Psychopharmacology, 2012, 224(1): 209-222. |
32 | LI N, WANG H, XIN S, et al. Confinement induces oxidative damage and synaptic dysfunction in mice[J]. Front Physiol, 2022, 13: 999574. |
33 | LI N, GAO Y, ZHANG Y, et al. An integrated multi-level analysis reveals learning-memory deficits and synaptic dysfunction in the rat model exposure to austere environment[J]. J Proteomics, 2023, 279: 104887. |
34 | CAO Y J, WANG Q, ZHENG X X, et al. Involvement of SNARE complex in the hippocampus and prefrontal cortex of offspring with depression induced by prenatal stress[J]. J Affect Disord, 2018, 235: 374-383. |
35 | PAOLICELLI R C, BOLASCO G, PAGANI F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458. |
36 | LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541: 481-487. |
37 | SCHWARZ Y, ZHAO N, KIRCHHOFF F, et al. Astrocytes control synaptic strength by two distinct v-SNARE-dependent release pathways[J]. Nat Neurosci, 2017, 20: 1529-1539. |
38 | TAKATA-TSUJI F, CHOUNLAMOUNTRI N, DO L D, et al. Microglia modulate gliotransmission through the regulation of VAMP2 proteins in astrocytes[J]. Glia, 2021, 69(1): 61-72. |
39 | DURKEE C A, ARAQUE A. Diversity and specificity of astrocyte-neuron communication[J]. Neuroscience, 2019, 396: 73-78. |
40 | MIELNICKA A, MICHALUK P. Exocytosis in astrocytes[J]. Biomolecules, 2021, 11(9): 1367. |
41 | LEE C W, WU H F, CHU M C, et al. Mechanism of intermittent Theta-burst stimulation in synaptic pathology in the prefrontal cortex in an antidepressant-resistant depression rat model[J]. Cereb Cortex, 2021, 31(1): 575-590. |
/
〈 |
|
〉 |