论著 · 临床研究

重症监护病房转出后患者早期症状网络分析

  • 董冉 ,
  • 余倩 ,
  • 台瑞 ,
  • 杨富 ,
  • 方芳
展开
  • 1.上海交通大学护理学院,上海 200025
    2.上海交通大学医学院附属第一人民医院护理部,上海 200080
董 冉(1998—),女,硕士生;电子信箱:random5126@126.com
方 芳,电子信箱:fang_fang0604@163.com

收稿日期: 2023-12-15

  录用日期: 2024-03-01

  网络出版日期: 2024-06-18

基金资助

上海交通大学医学院护理学科建设项目(SJTUHLXK2021);上海申康医院发展中心技术规范化管理和推广项目(SHDC22022219)

Early symptom network analysis of patients after transfer from intensive care unit

  • Ran DONG ,
  • Qian YU ,
  • Rui TAI ,
  • Fu YANG ,
  • Fang FANG
Expand
  • 1.School of Nursing, Shanghai Jiao Tong University, Shanghai 200025, China
    2.Department of Nursing, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
FANG Fang, E-mail: fang_fang0604@163.com.

Received date: 2023-12-15

  Accepted date: 2024-03-01

  Online published: 2024-06-18

Supported by

Nursing Development Program of Shanghai Jiao Tong University School of Medicine(SJTUHLXK2021);Standardized Technology Management and Promotion Project of Shanghai Hospital Development Center(SHDC22022219)

摘要

目的·构建成人重症监护病房(intensive care unit,ICU)患者转出后(ICU后患者)的早期症状网络;辨别网络中的核心症状和桥梁症状,对比综合ICU和心脏监护病房(coronary care unit,CCU)2个亚组的症状网络,分析症状的发生情况。方法·于2022年12月—2023年8月,从上海交通大学医学院附属第一人民医院综合ICU和CCU转入普通病房3 d(±48 h)的成人患者中方便抽样328例。采用患者一般情况和临床资料调查表、症状调查问卷(由医院焦虑抑郁量表、疲劳严重程度量表、理查兹-坎贝尔睡眠量表、疼痛数字评分法组成)对患者进行调查。基于Spearman相关性分析和GLASSO算法构建同期症状网络,计算网络的中心性指标,对比亚组症状网络的差异,并进行网络的边线准确性和中心性指标稳定性检验。结果·共收集有效问卷302份,问卷有效率92.1%。中心性指标计算结果显示,ICU后患者的早期症状网络中,强度最高的是“感到振奋和愉快”(rS=1.145),紧密性最高的是“对以往感兴趣的事情仍然有兴趣”(rC=1.851×10-3),预期影响最高的是“疲劳影响体能”(rE=1.143)。桥梁强度前3位的是“心中充满烦恼”(rb=10.392)、“对以往感兴趣的事情仍然有兴趣”(rb=10.359)和疼痛(rb=10.221)。综合ICU和CCU患者转入普通病房后的早期症状网络在网络结构(M=0.289)和整体连接强度(GS综合ICU=13.876,GSCCU=13.838;S=0.039)上差异无统计学意义;对比亚组的中心性指标,除5个症状表现的强度和预期影响差异有统计学意义(均P<0.05)外,其他指标间差异均无统计学意义。ICU后患者早期症状网络的边线准确性和中心性指标稳定性良好。结论·成人ICU后患者早期的核心症状为焦虑和抑郁,疼痛是桥梁症状之一。综合ICU和CCU患者转出后的早期症状发生情况差异不大。医护人员要关注ICU后患者早期的不适症状,针对性开展干预以提升患者的舒适体验,促进其康复进程。

本文引用格式

董冉 , 余倩 , 台瑞 , 杨富 , 方芳 . 重症监护病房转出后患者早期症状网络分析[J]. 上海交通大学学报(医学版), 2024 , 44(6) : 733 -740 . DOI: 10.3969/j.issn.1674-8115.2024.06.008

Abstract

Objective ·To establish the early symptom network of adult intensive care unit (ICU) patients after transfer (post-ICU patients), identify the core symptoms and bridge symptoms, compare the symptom networks of two subgroups, i.e. mixed ICU and coronary care unit (CCU), and analyze the occurrence of symptoms. Methods ·From December 2022 to August 2023, a total of 328 adult patients transferred to wards from mixed ICU and CCU of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine were selected by convenience sampling. The general situation and clinical data questionnaire, and symptom questionnaires (including Hospital Anxiety and Depression Scale, Fatigue Severity Scale, Richards-Campbell Sleep Questionnaire, and Pain Numeric Rating Scale) were used. Based on Spearman correlation analysis and GLASSO algorithm, contemporaneous symptom network was built, and centrality indices and differences between subgroup symptom networks were computed. The edge accuracy and the stability of centrality indices of the network were tested. Results ·A total of 302 valid questionnaires were collected, and the effective rate was 92.1%. The results of the centrality indices computations showed that in the early symptom network of post-ICU patients, the highest strength was “feel cheerful” (rS=1.145), the highest closeness was “enjoy something” (rC=1.851×10-3), and the highest expected influence was “(fatigue) interferes with physical function” (rE=1.143). The top three highest bridge strengths of symptoms were “worrying thoughts” (rb=10.392), “enjoy something” (rb=10.359), and pain (rb=10.221). There were no significant differences in network structure (M=0.289) and overall connection strength (GSmixed ICU=13.876, GSCCU=13.838; S=0.039) of the early symptom networks between mixed ICU and CCU patients after being transferred to wards. When comparing the centrality indices, apart from the strength and expected influence of five symptoms showing statistically significant differences (all P<0.05), other indices were not significantly different. The edge accuracy and the stability of centrality indices in the early symptom network of post-ICU patients were fine. Conclusion ·Anxiety and depression are the core symptoms of adult post-ICU patients, and pain is one of the bridge symptoms. There is no significant difference in the incidence of early symptoms between mixed ICU and CCU patients after being transferred out. Medical care personnel should pay attention to the discomfort symptoms of post-ICU patients, and carry out targeted interventions to improve patients' comfort and promote the rehabilitation process.

参考文献

1 NEEDHAM D M, DAVIDSON J, COHEN H, et al. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders' conference[J]. Crit Care Med, 2012, 40(2): 502-509.
2 ENGER R, ANDERSHED B. Nurses' experience of the transfer of ICU patients to general wards: a great responsibility and a huge challenge[J]. J Clin Nurs, 2018, 27(1/2): e186-e194.
3 台瑞, 方芳, 杨富. ICU转出病人过渡期护理的研究进展[J]. 护理研究, 2019, 33(9): 1522-1526.
3 TAI R, FANG F, YANG F. Research advances on transitional care of patients transferred from ICU[J]. Chinese Nursing Research, 2019, 33(9): 1522-1526.
4 詹昱新, 喻姣花. ICU联络护士临床实践研究进展[J]. 护理学杂志, 2023, 38(24): 95-98.
4 ZHAN Y X, YU J H. Research progress on clinical practice of ICU liaison nurses[J]. Journal of Nursing Science, 2023, 38(24): 95-98.
5 王佩, 詹昱新. ICU过渡期护理人员角色认知质性研究的Meta整合[J]. 护理学杂志, 2024, 39(6): 63-67.
5 WANG P, ZHAN Y X. Cognition of the role of nursing staff in ICU transition period: a meta-synthesis of qualitative research [J]. Journal of Nursing Science, 2024, 39(6): 63-67.
6 HARVEY M A, DAVIDSON J E. Postintensive care syndrome: right care, right now...and later[J]. Crit Care Med, 2016, 44(2): 381-385.
7 KOSINSKI S, MOHAMMAD R A, PITCHER M, et al. What is post-intensive care syndrome (PICS)?[J]. Am J Respir Crit Care Med, 2020, 201(8): P15-P16.
8 HEYDON E, WIBROW B, JACQUES A, et al. The needs of patients with post-intensive care syndrome: a prospective, observational study[J]. Aust Crit Care, 2020, 33(2): 116-122.
9 JACKSON J C, PANDHARIPANDE P P, GIRARD T D, et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study[J]. Lancet Respir Med, 2014, 2(5): 369-379.
10 MARRA A, PANDHARIPANDE P P, GIRARD T D, et al. Co-occurrence of post-intensive care syndrome problems among 406 survivors of critical illness[J]. Crit Care Med, 2018, 46(9): 1393-1401.
11 UNOKI T, SAKURAMOTO H, UEMURA S, et al. Prevalence of and risk factors for post-intensive care syndrome: multicenter study of patients living at home after treatment in 12 Japanese intensive care units, SMAP-HoPe study[J]. PLoS One, 2021, 16(5): e0252167.
12 汤铂, 陈文劲, 蒋丽丹, 等. 重症后管理专家共识[J]. 中华内科杂志, 2023, 62(5): 480-493.
12 TANG B, CHEN W J, JIANG L D, et al. Expert consensus on late stage of critical care management[J]. Chinese Journal of Internal Medicine, 2023, 62(5): 480-493.
13 EPSKAMP S, BORSBOOM D, FRIED E I. Estimating psychological networks and their accuracy: a tutorial paper[J]. Behav Res Methods, 2018, 50(1): 195-212.
14 BORSBOOM D. A network theory of mental disorders[J]. World Psychiatry, 2017, 16(1): 5-13.
15 翟林君, 刘蓉, 郭傲寒, 等. 维持性血液透析患者的症状群及网络分析[J]. 护士进修杂志, 2023, 38(24): 2289-2294, 2302.
15 ZHAI L J, LIU R, GUO A H, et al. Symptom clusters and network analysis of maintenance hemodialysis patients[J]. Journal of Nurses Training, 2023, 38(24): 2289-2294, 2302.
16 杨红丽, 朱政, 胡雁, 等. HIV感染者随访期间核心症状及严重程度的调查研究[J]. 中华护理杂志, 2021, 56(5): 727-731.
16 YANG H L, ZHU Z, HU Y, et al. Centrality and serverity of symptoms in people living with HIV: a cross-sectional study[J]. Chinese Journal of Nursing, 2021, 56(5): 727-731.
17 叶艳欣, 秦岚, 曾凯, 等. 癌症患者治疗间歇期核心症状及症状群的识别[J]. 护理学杂志, 2022, 37(1): 20-24.
17 YE Y X, QIN L, ZENG K, et al. Identifying core symptoms and symptom clusters in patients during intermittent period of cancer therapy[J]. Journal of Nursing Science, 2022, 37(1): 20-24.
18 ZHU Z, SUN Y L, KUANG Y, et al. Contemporaneous symptom networks of multidimensional symptom experiences in cancer survivors: a network analysis[J]. Cancer Med, 2023, 12(1): 663-673.
19 COLD S, COLD F, JENSEN M B, et al. Systemic or vaginal hormone therapy after early breast cancer: a Danish observational cohort study[J]. J Natl Cancer Inst, 2022, 114(10): 1347-1354.
20 陈丽霞. 中文版理查兹-坎贝尔睡眠量表的信效度研究及临床应用评价[D]. 大连: 大连大学, 2017.
20 CHEN L X. Reliability and validity and clinical practice of the Chinese version of Richards-Campbell Sleep Questionnaire[D]. Dalian: Dalian University, 2017.
21 孙振晓, 刘化学, 焦林瑛, 等. 医院焦虑抑郁量表的信度及效度研究[J]. 中华临床医师杂志(电子版), 2017, 11(2): 198-201.
21 SUN Z X, LIU H X, JIAO L Y, et al. Reliability and validity of Hospital Anxiety and Depression Scale[J]. Chinese Journal of Clinicians (Electronic Edition), 2017, 11(2): 198-201.
22 顾晓婕, 张智, 邓小岚, 等. 疲劳严重程度评估量表在2型糖尿病患者中应用的信效度分析[J]. 护士进修杂志, 2021, 36(10): 876-880.
22 GU X J, ZHANG Z, DENG X L, et al. Preliminary application of Fatigue Severity Assessment Scale in patients with type 2 diabetes[J]. Journal of Nurses Training, 2021, 36(10): 876-880.
23 LI L, HERR K, CHEN P Y. Postoperative pain assessment with three intensity scales in Chinese elders[J]. J Nurs Scholarsh, 2009, 41(3): 241-249.
24 GéLINAS C. Pain assessment in the critically ill adult: recent evidence and new trends[J]. Intensive Crit Care Nurs, 2016, 34: 1-11.
25 KUISMIN M, SILLANP?? M J. MCPeSe: Monte Carlo penalty selection for graphical lasso[J]. Bioinformatics, 2021, 37(5): 726-727.
26 ROBINAUGH D J, MILLNER A J, MCNALLY R J. Identifying highly influential nodes in the complicated grief network[J]. J Abnorm Psychol, 2016, 125(6): 747-757.
27 JONES P J, MA R F, MCNALLY R J. Bridge centrality: a network approach to understanding comorbidity[J]. Multivariate Behav Res, 2021, 56(2): 353-367.
28 PAPACHRISTOU N, BARNAGHI P, COOPER B, et al. Network analysis of the multidimensional symptom experience of oncology[J]. Sci Rep, 2019, 9(1): 2258.
29 HUANG S S, LAI X X, XUE Y, et al. A network analysis of problematic smartphone use symptoms in a student sample[J]. J Behav Addict, 2020, 9(4): 1032-1043.
30 PROFFITT T, MENZIES V. Relationship of symptoms associated with ICU-survivorship: an integrative literature review[J]. Intensive Crit Care Nurs, 2019, 53: 60-67.
31 CUZCO C, CASTRO P, MARíN PéREZ R, et al. Impact of a nurse-driven patient empowerment intervention on the reduction in patients' anxiety and depression during ICU discharge: a randomized clinical trial[J]. Crit Care Med, 2022, 50(12): 1757-1767.
32 HATCH R, YOUNG D, BARBER V, et al. Anxiety, depression and post traumatic stress disorder after critical illness: a UK-wide prospective cohort study[J]. Crit Care, 2018, 22(1): 310.
33 李真, 吴欣娟, 杨慧, 等. ICU日记对患者及家属心理健康干预效果的Meta分析[J]. 中华护理杂志, 2020, 55(7): 1091-1096.
33 LI Z, WU X J, YANG H, et al. The effectiveness of ICU diary on mental health status of ICU patients and their family members: a systematic review and meta-analysis[J]. Chinese Journal of Nursing, 2020, 55(7): 1091-1096.
34 台瑞, 方芳, 杨富, 等. 综合重症监护室患者过渡期护理方案的构建与应用[J]. 解放军护理杂志, 2021, 38(3): 10-13.
34 TAI R, FANG F, YANG F, et al. Design and implementation of a transitional care plan in comprehensive intensive care unit[J]. Nursing Journal of Chinese People's Liberation Army, 2021, 38(3): 10-13.
35 吴贤群, 尚彬, 周燕, 等. 基于网络分析的维持性血液透析患者透析期间核心症状研究[J]. 实用临床医药杂志, 2023, 27(15): 56-61, 67.
35 WU X Q, SHANG B, ZHOU Y, et al. Investigation of core symptoms during hemodialysis period in maintenance hemodialysis patients: a network analysis[J]. Journal of Clinical Medicine in Practice, 2023, 27(15): 56-61, 67.
36 刘敏君, 祁海鸥, 童莺歌, 等. 危重症术后患者ICU过渡期疼痛管理方案的构建[J]. 中国护理管理, 2023, 23(10): 1452-1456.
36 LIU M J, QI H O, TONG Y G, et al. Construction of pain management plan for postoperative critical ill patients during ICU transition[J]. Chinese Nursing Management, 2023, 23(10): 1452-1456.
文章导航

/