收稿日期: 2024-02-27
录用日期: 2024-03-21
网络出版日期: 2024-07-28
基金资助
国家自然科学基金(31971137)
Study on the developmental function of CT14 using the model organism Caenorhabditis elegans
Received date: 2024-02-27
Accepted date: 2024-03-21
Online published: 2024-07-28
Supported by
National Natural Science Foundation of China(31971137)
目的·使用模式生物秀丽隐杆线虫(简称线虫)研究癌-睾丸抗原14(cancer-testis antigen 14,CT14)对其胚胎及幼虫发育的影响,探索CT14在发育中的潜在功能和作用机制。方法·利用显微注射构建可诱导表达人源CT14(HsCT14)、缺失CT14特异性中间序列(CT14-specific intermediate region,CIR)的截短突变体HsCT14?CIR及绿色荧光蛋白对照的转基因线虫品系,观察并比较全长和截短突变体CT14表达后对线虫虫卵的胚胎发育及幼虫发育过程的影响。构建可诱导表达食蟹猕猴(Macaca fascicularis)和倭狐猴(Microcebus murinus)CT14的线虫品系,比较异源表达不同灵长类种属来源的CT14对线虫虫卵孵化率及幼虫成虫率的影响。通过Smart-seq转录组测序技术分析CT14表达引起的线虫胚胎的基因表达差异,并采用京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析和基因集富集分析(Gene Set Enrichment Analysis,GSEA),进一步探索线虫胚胎中受CT14影响的相关生物学过程及通路。结果·HsCT14及其截短突变体HsCT14?CIR的诱导表达显著降低了线虫虫卵孵化率,其中HsCT14的表达对孵化率的影响较大。微分干涉对比(differential interference contrast,DIC)显微技术观察显示,表达HsCT14的线虫胚胎在发育的comma期表现出明显的形态学异常。HsCT14及其截短突变体HsCT14?CIR表达后的线虫幼虫成虫率显著低于绿色荧光蛋白对照组,并出现生长阻滞现象,其中HsCT14的表达对成虫率的影响较大。食蟹猕猴CT14(MfCT14)的表达对线虫虫卵孵化率及幼虫成虫率的影响与人源HsCT14相似,而倭狐猴CT14(MmCT14)的表达对上述指标的影响显著低于HsCT14和MfCT14。Smart-seq转录组测序结果显示,CT14的表达可能影响线虫胚胎的多个生物学过程,涉及ATP依赖的染色质重塑过程和DNA复制通路等。结论·CT14的异源表达显著干扰线虫的胚胎发育和幼虫发育,CIR起了关键的增强作用。推测CT14可能通过影响染色质重塑等多个通路的基因表达,在发育生物学中发挥重要调节作用。
杨舒雯 , 陈娟 , 杨琴 , 雷鸣 , 黄晨辉 . 利用秀丽隐杆线虫模型研究CT14在发育中的功能[J]. 上海交通大学学报(医学版), 2024 , 44(7) : 871 -882 . DOI: 10.3969/j.issn.1674-8115.2024.07.008
Objective ·To investigate the effects of the cancer-testis antigen 14 (CT14) on embryonic and larval development in nematodes by using the model organism Caenorhabditis elegans (C. elegans), aiming to uncover its potential functions and mechanisms during development. Methods ·Transgenic C. elegans strains were constructed by using microinjection for the inducible expression of human CT14 (HsCT14), a truncated mutant of CT14 (HsCT14?CIR) lacking CT14-specific intermediate region (CIR), and a green fluorescent protein (GFP) control. The impacts of full-length and truncated mutant CT14 on nematode embryonic and larval development were analyzed and compared. Additionally, transgenic C. elegans strains with inducible expression of CT14 from various primates, including the crab-eating macaque (Macaca fascicularis) and mouse lemur (Microcebus murinus), were also constructed to assess the effects on egg hatching and larval-to-adult transformation rates. The differential gene expression in nematode embryos induced by CT14 was analyzed by Smart-seq transcriptome sequencing, with further insights gained through KEGG (Kyoto Encyclopedia of Genes and Genomes) and GSEA (Gene Set Enrichment Analysis), to explore the involved biological processes and pathways. Results ·The induced expression of HsCT14 and its truncated mutant HsCT14?CIR significantly reduced the hatching rate of nematode eggs, with a more pronounced effect observed in HsCT14-expressing strains. Differential interference contrast (DIC) microscopy imaging revealed significant morphological abnormalities in embryos expressing HsCT14 during the comma stage. Nematodes expressing HsCT14 or HsCT14?CIR exhibited developmental arrest in larvae and substantially lower larval-to-adult transformation rates compared to the GFP control. The impact was more pronounced in nematodes expressing HsCT14 than those with HsCT14?CIR. The expression of Macaca fascicularis CT14 (MfCT14) exhibited significant effects on the hatching rate and adult transformation rate, similar to that of HsCT14, while the expression of Microcebus murinus CT14 (MmCT14) displayed significantly reduced impact compared to HsCT14 and MfCT14. Smart-seq results indicated that CT14 expression affected various biological processes in nematode embryos, related to ATP-dependent chromatin remodeling and DNA replication. Conclusion ·Ectopic expression of the cancer-testis antigen CT14 significantly disrupts both embryonic and larval developments in C. elegans, with the CIR sequence substantially enhancing this effect. It suggests that CT14 may play an important regulatory role in biological development by affecting gene expression in multiple pathways, including chromatin remodeling.
1 | GORDEEVA O. Cancer-testis antigens: unique cancer stem cell biomarkers and targets for cancer therapy[J]. Semin Cancer Biol, 2018, 53: 75-89. |
2 | FAN C M, QU H K, WANG X, et al. Cancer/testis antigens: from serology to mRNA cancer vaccine[J]. Semin Cancer Biol, 2021, 76: 218-231. |
3 | ZHANG G H, JIANG C, YANG Y S, et al. Deficiency of cancer/testis antigen gene CT55 causes male infertility in humans and mice[J]. Cell Death Differ, 2023, 30(2): 500-514. |
4 | LIU W S, LU C, MISTRY B V. Subcellular localization of the mouse PRAMEL1 and PRAMEX1 reveals multifaceted roles in the nucleus and cytoplasm of germ cells during spermatogenesis[J]. Cell Biosci, 2021, 11(1): 102. |
5 | SCH?FER P, PARASCHIAKOS T, WINDHORST S. Oncogenic activity and cellular functionality of melanoma associated antigen A3[J]. Biochem Pharmacol, 2021, 192: 114700. |
6 | NIN D S, DENG L W. Biology of cancer-testis antigens and their therapeutic implications in cancer[J]. Cells, 2023, 12(6): 926. |
7 | YANG P, MENG M, ZHOU Q S. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1): 188558. |
8 | ZHANG Y J, YU X H, LIU Q P, et al. SAGE1: a potential target antigen for lung cancer T-cell immunotherapy[J]. Mol Cancer Ther, 2021, 20(11): 2302-2313. |
9 | YANG Y, QU Y J, LI Z P, et al. Identification of novel characteristics in TP53-mutant hepatocellular carcinoma using bioinformatics[J]. Front Genet, 2022, 13: 874805. |
10 | ISHIHARA M, KAGEYAMA S, MIYAHARA Y, et al. MAGE-A4, NY-ESO-1 and SAGE mRNA expression rates and co-expression relationships in solid tumours[J]. BMC Cancer, 2020, 20(1): 606. |
11 | PACKER J S, ZHU Q, HUYNH C, et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution[J]. Science, 2019, 365(6459): eaax1971. |
12 | ALJOHANI M D, MOURIDI S E, PRIYADARSHINI M, et al. Engineering rules that minimize germline silencing of transgenes in simple extrachromosomal arrays in C. elegans[J]. Nat Commun, 2020, 11(1): 6300. |
13 | KIMBLE J, NüSSLEIN-VOLHARD C. The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila melanogaster[J]. Dev Biol, 2022, 485: 93-122. |
14 | AZUMA Y, OKADA H, ONAMI S. Systematic analysis of cell morphodynamics in C. elegans early embryogenesis[J]. Front Bioinform, 2023, 3: 1082531. |
15 | YAN L Y, YANG M Y, GUO H S, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells[J]. Nat Struct Mol Biol, 2013, 20(9): 1131-1139. |
16 | MAO S S, QI Y C, ZHU H H, et al. A tet/Q hybrid system for robust and versatile control of transgene expression in C.elegans[J]. iScience, 2019, 11: 224-237. |
17 | VAN DER VAART A, GODFREY M, PORTEGIJS V, et al. Dose-dependent functions of SWI/SNF BAF in permitting and inhibiting cell proliferation in vivo[J]. Sci Adv, 2020, 6(21): 3823. |
18 | COHEN I, BAR C, LIU H Q, et al. Polycomb complexes redundantly maintain epidermal stem cell identity during development[J]. Genes Dev, 2021, 35(5/6): 354-366. |
19 | ROSS J M, ZARKOWER D. Polycomb group regulation of Hox gene expression in C. elegans[J]. Dev Cell, 2003, 4(6): 891-901. |
20 | ERDELYI P, WANG X, SULESKI M, et al. A network of chromatin factors is regulating the transition to postembryonic development in Caenorhabditis elegans[J]. G3, 2017, 7(2): 343-353. |
21 | SAVAGE-DUNN C, PADGETT R W. The TGF-β family in Caenorhabditis elegans[J]. Cold Spring Harb Perspect Biol, 2017, 9(6): a022178. |
22 | NAYAK S, SANTIAGO F E, JIN H, et al. The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis[J]. Curr Biol, 2002, 12(4): 277-287. |
23 | BRASHEAR W A, BREDEMEYER K R, MURPHY W J. Genomic architecture constrained placental mammal X Chromosome evolution[J]. Genome Res, 2021, 31(8): 1353-1365. |
24 | VOCKEL M, RIERA-ESCAMILLA A, TüTTELMANN F, et al. The X chromosome and male infertility[J]. Hum Genet, 2021, 140(1): 203-215. |
25 | JIA Y, CHENG Z X, BHARATH S R, et al. Crystal structure of the INTS3/INTS6 complex reveals the functional importance of INTS3 dimerization in DSB repair[J]. Cell Discov, 2021, 7(1): 66. |
26 | ZHENG H, QI Y L, HU S B, et al. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase Ⅱ phosphatase[J]. Science, 2020, 370(6520): eabb5872. |
27 | LAI F, GARDINI A, ZHANG A D, et al. Integrator mediates the biogenesis of enhancer RNAs[J]. Nature, 2015, 525(7569): 399-403. |
28 | BAILLAT D, HAKIMI M A, N??R A M, et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase Ⅱ[J]. Cell, 2005, 123(2): 265-276. |
/
〈 |
|
〉 |