论著 · 公共卫生

高血压和血脂异常对城市老年居民认知影响的研究

  • 张懿熠 ,
  • 倪长宇 ,
  • 金迎 ,
  • 何亚平 ,
  • 冯楠楠
展开
  • 1.上海交通大学公共卫生学院,上海 200025
    2.上海市疾病预防控制中心综合保障处,上海 200336
    3.上海市黄浦区打浦桥街道社区卫生服务中心,上海 200023
张懿熠(1993—),女,经济师,硕士生;电子信箱:zhangyiyi@scdc.sh.cn第一联系人:#为共同通信作者。
何亚平,电子信箱:hypcyr@shsmu.edu.cn
冯楠楠,电子信箱:nnfeng@shsmu.edu.cn

收稿日期: 2024-02-26

  录用日期: 2024-03-19

  网络出版日期: 2024-07-28

基金资助

国家自然科学基金(81602929)

Effect of hypertension and dyslipidemia on cognition of urban elderly residents

  • Yiyi ZHANG ,
  • Changyu NI ,
  • Ying JIN ,
  • Yaping HE ,
  • Nannan FENG
Expand
  • 1.Shanghai Jiao Tong University School of Public Health, Shanghai 200025, China
    2.Shanghai Municipal Center for Disease Control & Prevention, Integrated Security Services, Shanghai 200336, China
    3.Dapuqiao Street Community Health Service Center, Huangpu District, Shanghai 200023, China
HE Yaping, E-mail: hypcyr@shsmu.edu.cn.
FENG Nannan, E-mail: nnfeng@shsmu.edu.cn

Received date: 2024-02-26

  Accepted date: 2024-03-19

  Online published: 2024-07-28

Supported by

National Natural Science Foundation of China(81602929)

摘要

目的·探索高血压和血脂异常对老年人认知功能的影响。方法·采用前瞻性队列研究方法建立动态人群队列,于2019年整群选取上海某社区65岁及以上自愿参与免费体检项目居民建立基线,2022年在队列源社区整群随机抽取2个社区卫生服务站512例67~93岁社区老年人进行随访。采集数据包括居民健康档案、各项体检测量结果、简明精神状态检查(Mini-mental State Examination,MMSE)量表评分。结果·512例随访者中,经数据清洗,有效样本量为495例。根据基线和随访认知判断和变化,分3个认知组:好转组、正常组、下降组。下降组高血压患病率超好转组43.14%,超正常组24.39%(下降组66.67% vs好转组23.53%,P=0.011;下降组66.67% vs正常组42.28%,P=0.040)。好转组总胆固醇(total cholesterol,TC)低于正常组[好转组(4.38±1.04)mmol/L vs正常组(5.11±1.12)mmol/L,P=0.009],下降组2022年TC高于2019年[成对差值(0.46±0.87)mmol/L,95%CI 0.08~0.84,P=0.021]。好转组低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-Ch)低于正常组[好转组(2.51±0.92)mmol/L vs正常组(3.07±1.00)mmol/L,P=0.024],且其2022年高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-Ch)高于2019年[成对差值(0.16±0.20)mmol/L,95%CI 0.06~0.26,P=0.005]。多项式Logistic回归分析显示:好转组TC低于正常组[β=4.12,OR=61.64,95%CI 1.52~2 494.07,P=0.029]和下降组[β=5.88,OR=357.35,95%CI 4.54~28 149.75,P=0.008];下降组三酰甘油(triacylglycerol,TAG)[β=1.85,OR=6.34,95%CI 1.05~38.43,P=0.045]、LDL-Ch[β=5.61,OR=274.06,95%CI 3.65~20 567.57,P=0.011]和高血压[β=1.90,OR=6.69,95%CI 1.53~29.16,P=0.011]均高于好转组;下降组年龄大于正常组[β=0.08,OR=1.08,95%CI 1.00~1.16,P=0.041],受教育程度低于正常组[β=1.22,OR=3.39,95%CI 1.28~8.94,P=0.014]。结论·低TC和LDL-Ch、高HDL-Ch有利于认知好转;高血压、高TC、高TAG、高LDL-Ch、受教育程度低、高年龄是认知下降的风险因素。

本文引用格式

张懿熠 , 倪长宇 , 金迎 , 何亚平 , 冯楠楠 . 高血压和血脂异常对城市老年居民认知影响的研究[J]. 上海交通大学学报(医学版), 2024 , 44(7) : 907 -914 . DOI: 10.3969/j.issn.1674-8115.2024.07.012

Abstract

Objective ·To explore the effects of hypertension and dyslipidemia on cognitive function in the elderly. Methods ·A dynamic population cohort was established by using prospective cohort study methods. In 2019, a complete cohort was selected from residents aged 65 and above who voluntarily participated in a free physical examination program in a community in Shanghai, serving as the baseline cohort. In 2022, 512 community-dwelling elderly aged 67 to 93 were randomly selected from the same community as the follow-up cohort for the study. The collected date included residents′ health records, various physical examination measurements, and Mini-mental State Examination (MMSE) scale scores. Results ·Of the 512 cases that were followed up, the valid sample size was reduced to 495 after data cleaning. According to the baseline and follow-up cognitive assessments and changes, the cases were categorized into three cognitive groups: the improvement group, the normal group, and the decline group. The prevalence of hypertension in the decline group was 43.14% higher than that in the improvement group and 24.39% higher than that in the normal group (66.67% in the decline group vs 23.53% in the improvement group, P=0.011; 66.67% in the decline group vs 42.28% in the normal group, P=0.040). Total cholesterol (TC) in the improvement group was lower than that in the normal group [improvement group (4.38±1.04) mmol/L vs normal group (5.11±1.12) mmol/L, P=0.009]. Additionally, TC in the decline group in 2022 was higher than that in 2019 [paired difference (0.46±0.87) mmol/L, 95% CI 0.08?0.84, P=0.021]. LDL-Ch in the improvement group was lower than that in the normal group [improved group (2.51±0.92) mmol/L vs normal group (3.07±1.00) mmol/L, P=0.024], and their HDL-Ch in 2022 was higher than that in 2019 [paired difference (0.16±0.20) mmol/L, 95% CI 0.06?0.26, P=0.005]. The results of multinomial Logistic regression showed: TC in the improved group was lower than that in the normal group [β=4.12, OR=61.64, 95% CI 1.52?2494.07, P=0.029] and the decline group [β=5.88, OR=357.35, 95% CI 4.54?28149.75, P=0.008]; the TAG [β=1.85, OR=6.34, 95% CI 1.05?38.43, P=0.045], LDL-Ch [β=5.61, OR=274.06, 95% CI 3.65?20567.57, P=0.011], and hypertension [β=1.90, OR=6.69, 95% CI 1.53?29.16, P=0.011] in the decline group were higher than those in the improvement group; the age of the decline group was greater than that of the normal group [β=0.08, OR=1.08, 95% CI 1.00?1.16, P=0.041], and the education level was lower than that of the normal group [β=1.22, OR=3.39, 95% CI 1.28?8.94, P=0.014]. Conclusion ·Low TC and LDL-Ch and high HDL-Ch are beneficial to cognitive improvement. Conversely, hypertension, high TC, high TAG, high LDL-Ch, low education level, and advanced ages are risk factors for cognitive decline.

参考文献

1 FOLSTEIN M F, FOLSTEIN S E, MCHUGH P R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician[J]. J Psychiatr Res, 1975, 12(3): 189-198.
2 WALSH C E, YANG Y C, OI K, et al. Age profiles of cognitive decline and dementia in late life in the aging, demographics, and memory study[J]. J Gerontol B Psychol Sci Soc Sci, 2022, 77(10): 1880-1891.
3 World Health Organization. World health statistics 2023: monitoring health for the SDGs, sustainable development goals[M]. Geneva: WHO, 2024.
4 BUFORD T W. Hypertension and aging[J]. Ageing Res Rev, 2016, 26: 96-111.
5 DUAN J, SAM N B, WANG S J, et al. Exploring the association between cognitive decline and all-cause mortality with blood pressure as a potential modifier in oldest old individuals[J]. Sci Rep, 2022, 12(1): 17108.
6 HIRANO T. Pathophysiology of diabetic dyslipidemia[J]. J Atheroscler Thromb, 2018, 25(9): 771-782.
7 IADECOLA C, GOTTESMAN R F. Neurovascular and cognitive dysfunction in hypertension[J]. Circ Res, 2019, 124(7): 1025-1044.
8 STEWART R A H, HELD C, KRUG-GOURLEY S, et al. Cardiovascular and lifestyle risk factors and cognitive function in patients with stable coronary heart disease[J]. J Am Heart Assoc, 2019, 8(7): e010641.
9 HAN K T, KIM S J. Are serum cholesterol levels associated with cognitive impairment and depression in elderly individuals without dementia: a retrospective cohort study in South Korea[J]. Int J Geriatr Psychiatry, 2021, 36(1): 163-173.
10 LESPINASSE J, CHêNE G, MANGIN J F, et al. Associations among hypertension, dementia biomarkers, and cognition: the MEMENTO cohort[J]. Alzheimers Dement, 2023, 19(6): 2332-2342.
11 BATTISTA P, SALVATORE C, CASTIGLIONI I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study[J]. Behav Neurol, 2017, 2017: 1850909.
12 JIA L F, DU Y F, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671.
13 刘柯杉, 竹丽萍, 吴晓敏, 等. 天津市社区老年人血脂水平与轻度认知障碍发生关系病例对照研究[J]. 中国公共卫生, 2023, 9(3): 348-352.
13 LIU K S, ZHU L P, WU X M, et al. Association of blood lipid levels with mild cognitive impairment in the elderly:community-based case-control study in Tianjin city[J]. Chinese Journal of Public Health, 2023, 9(3): 348-352.
14 张慧强, 李鹏飞, 郭玉洁, 等. 2017年北京两社区中老年糖尿病患者血脂水平与认知功能关联[J]. 卫生研究, 2022, 51(6): 981-987, 995.
14 ZHANG H Q, LIU P F, GUO Y J, et al. Correlation analysis of lipid level and cognitive function in middle-aged and elderly diabetic population from 2 communities in Beijing in 2017[J]. Journal of Hygiene Research, 2022, 51(6): 981-987, 995.
15 MOONS K G, ALTMAN D G, REITSMA J B, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[J]. Ann Intern Med, 2015, 162(1): W1-W73.
16 YANG Z, HOLT H K, FAN J H, et al. Optimal cutoff scores for Alzheimer′s disease using the Chinese version of mini-mental state examination among Chinese population living in rural areas[J]. Am J Alzheimers Dis Other Demen, 2016, 31(8): 650-657.
17 LIVINGSTON G, HUNTLEY J, SOMMERLAD A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396(10248): 413-446.
18 DECARLI C. Blood pressure control and cognitive performance: something to think about with aging[J]. JAMA, 2015, 313(19): 1963-1964.
19 KIM Y J, KWON H K, LEE J M, et al. White matter microstructural changes in pure Alzheimer′s disease and subcortical vascular dementia[J]. Eur J Neurol, 2015, 22(4): 709-716.
20 MCEVOY L K, FENNEMA-NOTESTINE C, EYLER L T, et al. Hypertension-related alterations in white matter microstructure detectable in middle age[J]. Hypertension, 2015, 66(2): 317-323.
21 SHAJAHAN S, PETERS R, CARCEL C, et al. Hypertension and mild cognitive impairment: state-of-the-art review[J]. Am J Hypertens, 2024, 37(6): 385-393.
22 GOTTESMAN R F, SCHNEIDER A L, ALBERT M, et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study[J]. JAMA Neurol, 2014, 71(10): 1218-1227.
23 VAN DALEN J W, BRAYNE C, CRANE P K, et al. Association of systolic blood pressure with dementia risk and the role of age, U-shaped associations, and mortality[J]. JAMA Intern Med, 2022, 182(2): 142-152.
24 GAO H, WANG K, AHMADIZAR F, et al. Associations of changes in late-life blood pressure with cognitive impairment among older population in China[J]. BMC Geriatr, 2021, 21(1): 536.
25 WANG F, LI D, WANG L, et al. Mild hypertension protects the elderly from cognitive impairment: a 7-year retrospective cohort study[J]. Psychogeriatrics, 2020, 20(4): 412-418.
26 UNGVARI Z, TOTH P, TARANTINI S, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health[J]. Nat Rev Nephrol, 2021, 17(10): 639-654.
27 VADUGANATHAN M, MENSAH G A, TURCO J V, et al. The global burden of CardiovascularDiseases and risk: a compass for future health[J]. J Am Coll Cardiol, 2022, 80(25): 2361-2371.
28 FRISARDI V, SOLFRIZZI V, SERIPA D, et al. Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer′s disease[J]. Ageing Res Rev, 2010, 9(4): 399-417.
29 ANCELIN M L, RIPOCHE E, DUPUY A M, et al. Sex differences in the associations between lipid levels and incident dementia[J]. J Alzheimers Dis, 2013, 34(2): 519-528.
30 LIU Y, ZHONG X, SHEN J J, et al. Elevated serum TC and LDL-C levels in Alzheimer′s disease and mild cognitive impairment: a meta-analysis study[J]. Brain Res, 2020, 1727: 146554.
31 GUO Y J, LI P F, MA X J, et al. Association of circulating cholesterol level with cognitive function and mild cognitive impairment in the elderly: a community-based population study[J]. Curr Alzheimer Res, 2020, 17(6): 556-565.
32 ANUSHEEL, AVULA S N, JOSEPH K N, et al. The role of high-density lipoprotein in lowering risk of dementia in the elderly: a review[J]. Cureus, 2022, 14(4): e24374.
33 SOLOMON A, KIVIPELTO M, WOLOZIN B, et al. Midlife serum cholesterol and increased risk of Alzheimer′s and vascular dementia three decades later[J]. Dement Geriatr Cogn Disord, 2009, 28(1): 75-80.
34 XU Q, LIN Y, GENG J L, et al. The prevalence and risk factors for cognitive impairment following ischemic stroke[J]. Zhonghua Nei Ke Za Zhi, 2008, 47(12): 981-984.
35 WANG M Q, LI Y J, CONG L, et al. High-density lipoprotein cholesterol and brain aging amongst rural-dwelling older adults: a population-based magnetic resonance imaging study[J]. Eur J Neurol, 2021, 28(9): 2882-2892.
36 World Health Organization. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines[M]. Geneva: World Health Organization; 2019.
37 DENG Y, ZHAO S Q, CHENG G W, et al. The prevalence of mild cognitive impairment among Chinese people: a meta-analysis[J]. Neuroepidemiology, 2021, 55(2): 79-91.
38 DE JONG V M T, EIJKEMANS M J C, VAN CALSTER B, et al. Sample size considerations and predictive performance of multinomial logistic prediction models[J]. Stat Med, 2019, 38(9): 1601-1619.
文章导航

/