综述

甲状腺癌碘-131治疗抵抗发生的分子机制研究进展

  • 刘诗琪 ,
  • 王辉 ,
  • 冯方
展开
  • 1.上海交通大学医学院附属新华医院核医学科,上海 200092
    2.同济大学附属上海市第四人民医院核医学科,上海 200434
刘诗琪(1999—),女,硕士生;电子信箱:lsq0617@sjtu.edu.cn
冯 方,电子信箱:2305120@tongji.edu.cn

收稿日期: 2024-03-11

  录用日期: 2024-04-10

  网络出版日期: 2024-07-28

基金资助

国家自然科学基金(81974269);上海交通大学“交大之星”计划医工交叉研究基金(YG2019QNA39)

Advances in molecular mechanisms of iodine-131 therapy resistance in thyroid carcinoma

  • Shiqi LIU ,
  • Hui WANG ,
  • Fang FENG
Expand
  • 1.Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
    2.Department of Nuclear Medicine, Shanghai Fourth People′s Hospital, Tongji University, Shanghai 200434, China
FENG Fang, E-mail: 2305120@tongji.edu.cn.

Received date: 2024-03-11

  Accepted date: 2024-04-10

  Online published: 2024-07-28

Supported by

National Natural Science Found of China(81974269);Biomedical-engineering Cross Fund of Shanghai Jiao Tong University(YG2019QNA39)

摘要

甲状腺癌是内分泌系统最常见的恶性肿瘤,其中分化型甲状腺癌(differentiated thyroid carcinoma,DTC)占90%以上。多数DTC患者经过系统治疗后预后良好,但少数患者肿瘤原发灶或转移灶出现失分化现象,进展为放射性碘难治性DTC(radioiodine-refractory DTC,RAIR-DTC),预后明显变差,是甲状腺癌致死的主要原因。钠碘转运体(sodium iodide symporter,NIS)的表达和功能异常,是导致甲状腺癌碘-131治疗抵抗的主要原因,其发生受遗传学改变、表观遗传学改变、肿瘤微环境作用、自噬作用等多因素影响。遗传学改变如BRAF基因的V600E位点突变、RET/PTC基因重排等导致致癌信号通路的激活,直接或间接地影响NIS的表达及其在细胞膜上的正常定位。表观遗传学调控特定基因的表达模式,调节NIS的表达水平,进而影响甲状腺细胞的碘摄取功能。肿瘤微环境中的免疫细胞、细胞因子和细胞外基质等成分也可能通过降低NIS的表达水平和/或干扰其在细胞膜上的正常功能导致细胞碘摄取障碍。此外,自噬作为一种细胞内部的代谢调节机制,也可以调节NIS的表达及其在细胞内的分布,从而影响碘的摄取和碘-131治疗的敏感性。通过综述以上因素在甲状腺癌失分化中的作用机制,可以更全面地理解RAIR-DTC的发生和发展过程,有助于探寻新的治疗靶点,改善预后,并为患者提供更有效的个体化治疗策略。

本文引用格式

刘诗琪 , 王辉 , 冯方 . 甲状腺癌碘-131治疗抵抗发生的分子机制研究进展[J]. 上海交通大学学报(医学版), 2024 , 44(7) : 915 -921 . DOI: 10.3969/j.issn.1674-8115.2024.07.013

Abstract

Thyroid cancer is the most common malignant tumor of the endocrine system, with differentiated thyroid carcinoma (DTC) accounting for over 90%. Most DTC patients have a good prognosis after systematic treatment, but a few develop dedifferentiation of primary tumor site or metastases, progressing to radioiodine-refractory DTC (RAIR-DTC), leading to significantly worse prognosis, which is a major cause of thyroid carcinoma-related mortality. Dysregulation of sodium iodide symporter (NIS) expression and function is the main reason for iodine-131 therapy resistance in thyroid carcinoma, influenced by genetic changes, epigenetic changes, tumor microenvironment, autophagy, and other factors. Genetic alterations such as the BRAFV600E mutation and RET/PTC chromosomal rearrangements activate oncogenic signaling pathways, directly or indirectly affecting NIS expression and its normal localization on the cell membrane. Epigenetic regulation modulates specific gene expression patterns, regulating NIS gene expression levels, thereby affecting the radioiodine uptake function of thyroid cells. Components in the tumor microenvironment, including immune cells, cytokines, and extracellular matrix, may also disrupt iodine uptake by reducing the expression levels of NIS and/or disrupting its normal function on the cell membrane. Additionally, autophagy, as an intracellular metabolic regulatory mechanism, can also modulate NIS expression and its intracellular distribution, thus impacting the radioiodine uptake and the sensitivity to iodine-131 therapy. Reviewing the roles of these factors in thyroid carcinoma dedifferentiation comprehensively can provide a more thorough understanding of the occurrence and progression of RAIR-DTC, aiding in the exploration of new therapeutic targets, improving prognosis, and providing more effective personalized treatment strategies for patients.

参考文献

1 MILLER K D, FIDLER-BENAOUDIA M, KEEGAN T H, et al. Cancer statistics for adolescents and young adults, 2020[J]. CA Cancer J Clin, 2020, 70(6): 443-459.
2 MIRANDA-FILHO A, LORTET-TIEULENT J, BRAY F, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study[J]. Lancet Diabetes Endocrinol, 2021, 9(4): 225-234.
3 DAVIES L, HOANG J K. Thyroid cancer in the USA: current trends and outstanding questions[J]. Lancet Diabetes Endocrinol, 2021, 9(1): 11-12.
4 DE LA FOUCHARDIERE C, ALGHUZLAN A, BARDET S, et al. The medical treatment of radioiodine-refractory differentiated thyroid cancers in 2019. A TUTHYREF? network review[J]. Bull Cancer, 2019, 106(9): 812-819.
5 OH J M, AHN B C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS[J]. Theranostics, 2021, 11(13): 6251-6277.
6 SCHEFFEL R S, DORA J M, MAIA A L. BRAF mutations in thyroid cancer[J]. Curr Opin Oncol, 2022, 34(1): 9-18.
7 SCHLUMBERGER M, LEBOULLEUX S. Current practice in patients with differentiated thyroid cancer[J]. Nat Rev Endocrinol, 2021, 17(3): 176-188.
8 YU P C, QU N, ZHU R, et al. TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis[J]. Sci Adv, 2023, 9(35): eadg7125.
9 FAN T B, ZHU W B, KONG M, et al. The significance of PAX8-PPARγ expression in thyroid cancer and the application of a PAX8-PPARγ-targeted ultrasound contrast agent in the early diagnosis of thyroid cancer[J]. Contrast Media Mol Imaging, 2022, 2022: 3265342.
10 MANZELLA L, STELLA S, PENNISI M S, et al. New insights in thyroid cancer and p53 family proteins[J]. Int J Mol Sci, 2017, 18(6): 1325.
11 DUNN L A, SHERMAN E J, BAXI S S, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428.
12 HAYES D N, LUCAS A S, TANVETYANON T, et al. Phase Ⅱ efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements[J]. Clin Cancer Res, 2012, 18(7): 2056-2065.
13 HO A L, GREWAL R K, LEBOEUF R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7): 623-632.
14 HO A L, DEDECJUS M, WIRTH L J, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: a phase Ⅲ, randomized, placebo-controlled trial (ASTRA)[J]. J Clin Oncol, 2022, 40(17): 1870-1878.
15 AASHIQ M, SILVERMAN D A, NA′ARA S, et al. Radioiodine-refractory thyroid cancer: molecular basis of redifferentiation therapies, management, and novel therapies[J]. Cancers, 2019, 11(9): 1382.
16 DOGHISH A S, EL-MAHDY H A, ISMAIL A, et al. Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways[J]. Pathol Res Pract, 2023, 243: 154371.
17 PEKOVA B, SYKOROVA V, MASTNIKOVA K, et al. NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis[J]. Cancers, 2021, 13(8): 1932.
18 NIKITSKI A V, CONDELLO V, DIVAKARAN S S, et al. Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells[J]. Thyroid, 2023, 33(4): 464-473.
19 CHEN X, LI M Z, ZHOU H W, et al. MiR-132 targets FOXA1 and exerts tumor-suppressing functions in thyroid cancer[J]. Oncol Res, 2019, 27(4): 431-437.
20 MA Y H, ZHANG Q, ZHANG K X, et al. NTRK fusions in thyroid cancer: pathology and clinical aspects[J]. Crit Rev Oncol Hematol, 2023, 184: 103957.
21 GROUSSIN L, CLERC J, HUILLARD O. Larotrectinib-enhanced radioactive iodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2020, 383(17): 1686-1687.
22 DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282.
23 HWANG E, DOOLITTLE W K L, ZHU Y J, et al. Thyroid hormone receptor α1: a novel regulator of thyroid cancer cell differentiation[J]. Oncogene, 2023, 42(41): 3075-3086.
24 FERNáNDEZ L P, LóPEZ-MáRQUEZ A, SANTISTEBAN P. Thyroid transcription factors in development, differentiation and disease[J]. Nat Rev Endocrinol, 2015, 11(1): 29-42.
25 FU H, CHENG L X, JIN Y C, et al. MAPK inhibitors enhance HDAC inhibitor-induced redifferentiation in papillary thyroid cancer cells harboring BRAF V600E: an in vitro study[J]. Mol Ther Oncolytics, 2019, 12: 235-245.
26 READ M L, LEWY G D, FONG J C W, et al. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment[J]. Cancer Res, 2011, 71(19): 6153-6164.
27 HO P T B, CLARK I M, LE L T T. MicroRNA-based diagnosis and therapy[J]. Int J Mol Sci, 2022, 23(13): 7167.
28 李勇, 郭敏, 康英英. MicroRNA在甲状腺癌中的研究进展[J]. 中华全科医学, 2022, 20(2): 298-301, 351.
28 LI Y, GUO M, KANG Y Y. Research progress of microRNA in thyroid cancer[J]. Chinese Journal of General Practice, 2022, 20(2): 298-301, 351.
29 KONDROTIEN? A, DAUK?A A, PAMEDYTYT? D, et al. Papillary thyroid carcinoma tissue miR-146b, -21, -221, -222, -181b expression in relation with clinicopathological features[J]. Diagnostics, 2021, 11(3): 418.
30 GALUPPINI F, CENSI S, MERANTE BOSCHIN I, et al. Papillary thyroid carcinoma: molecular distinction by microRNA profiling[J]. Front Endocrinol, 2022, 13: 834075.
31 LAKSHMANAN A, WOJCICKA A, KOTLAREK M, et al. MicroRNA-339-5p modulates Na+/I symporter-mediated radioiodide uptake[J]. Endocr Relat Cancer, 2015, 22(1): 11-21.
32 HOU S S, XIE X R, ZHAO J, et al. Downregulation of miR-146b-3p inhibits proliferation and migration and modulates the expression and location of sodium/iodide symporter in dedifferentiated thyroid cancer by potentially targeting MUC20[J]. Front Oncol, 2020, 10: 566365.
33 JUNG C K. Crosstalk between the tumor microenvironment and immune response in thyroid cancer[J]. Gland Surg, 2019, 8(3): 294-297.
34 KABASAWA T, OHE R, AUNG N Y, et al. Potential role of M2 TAMs around lymphatic vessels during lymphatic invasion in papillary thyroid carcinoma[J]. Sci Rep, 2021, 11(1): 1150.
35 CHEN D W, LANG B H H, MCLEOD D S A, et al. Thyroid cancer[J]. Lancet, 2023, 401(10387): 1531-1544.
36 KARACA Z, TANRIVERDI F, UNLUHIZARCI K, et al. VEGFR1 expression is related to lymph node metastasis and serum VEGF may be a marker of progression in the follow-up of patients with differentiated thyroid carcinoma[J]. Eur J Endocrinol, 2011, 164(2): 277-284.
37 PLANTINGA T S, PETRULEA M S, OOSTING M, et al. Association of NF-κB polymorphisms with clinical outcome of non-medullary thyroid carcinoma[J]. Endocr Relat Cancer, 2017, 24(7): 307-318.
38 OHTA K, PANG X P, BERG L, et al. Antitumor actions of cytokines on new human papillary thyroid carcinoma cell lines[J]. J Clin Endocrinol Metab, 1996, 81(7): 2607-2612.
39 SLOOT Y J E, RABOLD K, ULAS T, et al. Interplay between thyroid cancer cells and macrophages: effects on IL-32 mediated cell death and thyroid cancer cell migration[J]. Cell Oncol, 2019, 42(5): 691-703.
40 ZHANG G Q, XI C, SHEN C T, et al. Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells[J]. Endocr Relat Cancer, 2023, 30(9): e230130.
41 QIN Y, SUN W, WANG Z H, et al. ATF2-induced lncRNA GAS8-AS1 promotes autophagy of thyroid cancer cells by targeting the miR-187-3p/ATG5 and miR-1343-3p/ATG7 axes[J]. Mol Ther Nucleic Acids, 2020, 22: 584-600.
42 HOLM T M, BIAN Z C, MANUPATI K, et al. Inhibition of autophagy mitigates cell migration and invasion in thyroid cancer[J]. Surgery, 2022, 171(1): 235-244.
43 CHEN X, LIN S, LIN Y, et al. BRAF-activated WT1 contributes to cancer growth and regulates autophagy and apoptosis in papillary thyroid carcinoma[J]. J Transl Med, 2022, 20(1): 79.
44 SHI Y B, CHEN S Y, LIU R B. The new insights into autophagy in thyroid cancer progression[J]. J Transl Med, 2023, 21(1): 413.
45 GUNDAMARAJU R, LU W Y, PAUL M K, et al. Autophagy and EMT in cancer and metastasis: who controls whom?[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(9): 166431.
46 YANG Y P, LAI W Y, LIN T W, et al. Autophagy reprogramming stem cell pluripotency and multiple-lineage differentiation[J]. J Chin Med Assoc, 2022, 85(6): 667-671.
47 WANG M, YU H, WU R, et al. Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells[J]. Int J Mol Med, 2020, 46(5): 1816-1826.
48 JIMéNEZ-MORA E, GALLEGO B, DíAZ-GAGO S, et al. V600EBRAF inhibition induces cytoprotective autophagy through AMPK in thyroid cancer cells[J]. Int J Mol Sci, 2021, 22(11): 6033.
49 DíAZ-GAGO S, VICENTE-GUTIéRREZ J, RUIZ-RODRíGUEZ J M, et al. Autophagy sustains mitochondrial respiration and determines resistance to BRAFV600E inhibition in thyroid carcinoma cells[J]. Autophagy, 2024: 1-15.
50 ROY S, SUNKARA R R, PARMAR M Y, et al. EMT imparts cancer stemness and plasticity: new perspectives and therapeutic potential[J]. Front Biosci, 2021, 26(2): 238-265.
51 DONGRE A, WEINBERG R A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84.
52 ZHONG J, LIU C, ZHANG Q H, et al. TGF-β1 induces HMGA1 expression: the role of HMGA1 in thyroid cancer proliferation and invasion[J]. Int J Oncol, 2017, 50(5): 1567-1578.
53 KLAUS A, FATHI O, TATJANA T W, et al. Expression of hypoxia-associated protein HIF-1α in follicular thyroid cancer is associated with distant metastasis[J]. Pathol Oncol Res, 2018, 24(2): 289-296.
54 VOLATIER T, SCHUMACHER B, CURSIEFEN C, et al. UV protection in the cornea: failure and rescue[J]. Biology, 2022, 11(2): 278.
55 CAI X, WANG R, TAN J, et al. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer[J]. Clin Transl Oncol, 2021, 23(12): 2403-2414.
56 FENG F, YEHIA L, NI Y, et al. A nonpump function of sodium iodide symporter in thyroid cancer via cross-talk with PTEN signaling[J]. Cancer Res, 2018, 78(21): 6121-6133.
57 LECHNER M G, BRENT G A. A new twist on a classic: enhancing radioiodine uptake in advanced thyroid cancer[J]. Clin Cancer Res, 2024, 30(7): 1220-1222.
文章导航

/