收稿日期: 2024-05-03
录用日期: 2024-06-04
网络出版日期: 2024-09-28
基金资助
国家自然科学基金(82171173);上海市“科技创新行动计划”启明星项目(扬帆专项)(22YF1422500);上海交通大学医学院“双百人”项目(20191818)
Effects of sevoflurane exposure on proliferation and differentiation of primary oligodendrocytes
Received date: 2024-05-03
Accepted date: 2024-06-04
Online published: 2024-09-28
Supported by
National Natural Science Foundation of China(82171173);Shanghai Sailing Program of Science and Technology Commission of Shanghai Municipality (STCSM)(22YF1422500);“Two-hundred Talents” Program of Shanghai Jiao Tong University School of Medicine(20191818)
目的·探索多次七氟烷处理对原代少突胶质细胞增殖和分化的影响。方法·提取出生当日大鼠皮层的少突胶质前体细胞(oligodendrocyte precursor cell,OPC)并进行体外培养。细胞分为对照组和七氟烷处理组。为了模拟临床使用七氟烷的情况,将七氟烷组细胞使用3%七氟烷连续处理3 d,每日1次,每次处理2 h。OPC分化成熟为少突胶质细胞后,使用免疫荧光染色和蛋白质印迹法(Western blotting)检测髓鞘碱性蛋白(myelin basic protein,MBP)和髓鞘关联糖蛋白(myelin-associated glycoprotein,MAG)的表达情况。采用细胞增殖实验(BrdU、Ki67染色)、细胞存活率实验(CCK8)检测七氟烷对OPC增殖能力和少突胶质细胞存活率的影响。采用Western blotting检测半胱氨酸蛋白酶-3(caspase-3)的蛋白含量。使用慢病毒转染技术,在OPC内过表达YTH N6-甲基腺苷RNA结合蛋白1(YTH N6-methyladenosine RNA binding protein F1,YTHDF1),后采用CCK8检测细胞增殖和存活情况。结果·免疫荧光结果提示,反复暴露于七氟烷会导致表达成熟髓鞘表面标志物(MBP、MAG)的原代少突胶质细胞数量减少;Western blotting结果表明,多次七氟烷处理导致原代OPC中caspase-3表达上调;CCK8结果表明,随着七氟烷处理次数的增加,原代OPC的存活率下降;然而,BrdU、Ki67染色结果显示,原代OPC在七氟烷处理后增殖能力增强。此外,过表达YTHDF1可以部分改善多次七氟烷处理而导致的原代OPC存活率下降(均P<0.05)。结论·多次七氟烷处理损伤原代少突胶质细胞的成髓鞘能力和存活率,表现为部分原代OPC凋亡;同时七氟烷处理代偿性提高了存活的原代OPC的增殖能力。
施灵玲 , 程燕咏 , 张磊 . 七氟烷对原代少突胶质细胞增殖和分化的影响[J]. 上海交通大学学报(医学版), 2024 , 44(9) : 1115 -1123 . DOI: 10.3969/j.issn.1674-8115.2024.09.006
Objective ·To investigate the effects of multiple sevoflurane exposures on the proliferation and differentiation of primary oligodendrocytes. Methods ·Oligodendrocyte precursor cells (OPCs) were extracted from the cortex of rats on the day of birth and cultured in vitro. The cells were divided into control and sevoflurane groups. To simulate the clinical situation of sevoflurane exposure, cells in the sevoflurane group were exposed to 3% sevoflurane for 3 consecutive days, 2 h for each time. After the OPCs were differentiated and matured, immunofluorescence staining and Western blotting were used to detect the expression of myelin basic protein (MBP) and the myelin-associated glycoprotein (MAG). Cell proliferation assays (BrdU and Ki67) and a cell viability assay (CCK8) were used to detect the effects of sevoflurane on the proliferation ability of OPCs and the survival rate of oligodendrocytes. Western blotting was used to detect the protein content of caspase-3. Lentiviral transfection technology was used to overexpress YTH N6-methyladenosine RNA binding protein F1 (YTHDF1) in OPCs, and then CCK8 was used to detect cell proliferation and survival. Results ·Immunofluorescence results showed that multiple sevoflurane exposures led to a decrease in the number of primary oligodendrocytes expressing mature myelin surface markers (MBP, MAG); Western blotting results showed that these exposures led to upregulation of caspase-3 expression in primary OPCs; CCK8 results showed that the survival rate of primary OPCs decreased with the increase in the number of sevoflurane treatments; however, BrdU and Ki67 staining results showed that the proliferation ability of primary OPCs was enhanced after sevoflurane exposure. In addition, overexpression of YTHDF1 could partially improve the decreased survival rate of primary OPCs caused by multiple sevoflurane exposures (all P<0.05). Conclusion ·Multiple sevoflurane exposures impair the myelinating ability and survival rate of primary oligodendrocytes, manifested by apoptosis of some primary OPCs. In contrast, sevoflurane exposure compensatorily increases the proliferation ability of surviving primary OPCs.
Key words: sevoflurane; oligodendrocyte; myelin; cell proliferation; apoptosis
1 | WARNER D O, ZACCARIELLO M J, KATUSIC S K, et al. Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the Mayo Anesthesia Safety in Kids (MASK) study[J]. Anesthesiology, 2018, 129(1): 89-105. |
2 | WALKDEN G J, GILL H, DAVIES N M, et al. Early childhood general anesthesia and neurodevelopmental outcomes in the Avon longitudinal study of parents and children birth cohort[J]. Anesthesiology, 2020, 133(5): 1007-1020. |
3 | RAPER J, DE BIASIO J C, MURPHY K L, et al. Persistent alteration in behavioural reactivity to a mild social stressor in rhesus monkeys repeatedly exposed to sevoflurane in infancy[J]. Br J Anaesth, 2018, 120(4): 761-767. |
4 | ROSADO-MENDEZ I M, NOGUCHI K K, CASTA?EDA-MARTINEZ L, et al. Quantitative ultrasound and apoptotic death in the neonatal primate brain[J]. Neurobiol Dis, 2019, 127: 554-562. |
5 | DAI C L, LI H C, HU X, et al. Neonatal exposure to anesthesia leads to cognitive deficits in old age: prevention with intranasal administration of insulin in mice[J]. Neurotox Res, 2020, 38(2): 299-311. |
6 | XIE L H, LIU Y, HU Y H, et al. Neonatal sevoflurane exposure induces impulsive behavioral deficit through disrupting excitatory neurons in the medial prefrontal cortex in mice[J]. Transl Psychiatry, 2020, 10(1): 202. |
7 | GUO S B, LIU L D, WANG C, et al. Repeated exposure to sevoflurane impairs the learning and memory of older male rats[J]. Life Sci, 2018, 192: 75-83. |
8 | JIANG J, LV X, WU X Y, et al. Downregulation of circulating insulin-like growth factor 1 contributes to memory impairment in aged mice after sevoflurane anesthesia[J]. Behav Pharmacol, 2017, 28(2 and 3-Spec Issue): 238-243. |
9 | SHEN Y S, ZHOU T, LIU X B, et al. Sevoflurane-induced miR-211-5p promotes neuronal apoptosis by inhibiting Efemp2[J]. ASN Neuro, 2021, 13: 17590914211035036. |
10 | TIAN Y, CHEN K Y, LIU L D, et al. Sevoflurane exacerbates cognitive impairment induced by Aβ1-40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus[J]. Mediators Inflamm, 2018, 2018: 3802324. |
11 | ZHENG S Q, AN L X, CHENG X, et al. Sevoflurane causes neuronal apoptosis and adaptability changes of neonatal rats[J]. Acta Anaesthesiol Scand, 2013, 57(9): 1167-1174. |
12 | ZHANG L, XUE Z Y, LIU Q D, et al. Disrupted folate metabolism with anesthesia leads to myelination deficits mediated by epigenetic regulation of ERMN[J]. EBioMedicine, 2019, 43: 473-486. |
13 | SHI L L, MIAO Z J, CHENG Y Y, et al. Folic acid ameliorated sevoflurane exposure-induced decrease in differentiation capacity of oligodendrocyte precursor cells[J]. Anesthesiol Perioper Sci, 2024, 2(2): 13. |
14 | LIU B, XIN W, TAN J R, et al. Myelin sheath structure and regeneration in peripheral nerve injury repair[J]. Proc Natl Acad Sci U S A, 2019, 116(44): 22347-22352. |
15 | READHEAD C, POPKO B, TAKAHASHI N, et al. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype[J]. Cell, 1987, 48(4): 703-712. |
16 | WU Z Y, XUE H, GAO Q S, et al. Effects of early postnatal sevoflurane exposure on oligodendrocyte maturation and myelination in cerebral white matter of the rat[J]. Biomed Pharmacother, 2020, 131: 110733. |
17 | ZHAO D, ZHANG M L, YANG L L, et al. GPR68 improves nerve damage and myelination in an immature rat model induced by sevoflurane anesthesia by activating cAMP/CREB to mediate BDNF[J]. ACS Chem Neurosci, 2022, 13(3): 423-431. |
18 | LIANG L R, ZENG T, ZHAO Y Y, et al. Melatonin pretreatment alleviates the long-term synaptic toxicity and dysmyelination induced by neonatal sevoflurane exposure via MT1 receptor-mediated Wnt signaling modulation[J]. J Pineal Res, 2021, 71(4): e12771. |
19 | ZUO Y, LI B W, XIE J H, et al. Sevoflurane anesthesia during pregnancy in mice induces cognitive impairment in the offspring by causing iron deficiency and inhibiting myelinogenesis[J]. Neurochem Int, 2020, 135: 104693. |
20 | IKONOMIDOU C, KIRVASSILIS G, SWINEY B S, et al. Mild hypothermia ameliorates anesthesia toxicity in the neonatal macaque brain[J]. Neurobiol Dis, 2019, 130: 104489. |
21 | ZHANG Z H, LIU H Q, JIA S S, et al. Spatial and temporal alterations of developing oligodendrocytes induced by repeated sevoflurane exposure in neonatal mice[J]. Biochem Biophys Res Commun, 2023, 640: 12-20. |
22 | SONG S Y, PENG K, MENG X W, et al. Single-nucleus atlas of sevoflurane-induced hippocampal cell type- and sex-specific effects during development in mice[J]. Anesthesiology, 2023, 138(5): 477-495. |
23 | ZHANG L, CHENG Y Y, XUE Z Y, et al. Sevoflurane impairs m6A-mediated mRNA translation and leads to fine motor and cognitive deficits[J]. Cell Biol Toxicol, 2022, 38(2): 347-369. |
24 | ALMEIDA R G, LYONS D A. On myelinated axon plasticity and neuronal circuit formation and function[J]. J Neurosci, 2017, 37(42): 10023-10034. |
25 | LI C, XIAO L, LIU X Y, et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination[J]. Glia, 2013, 61(5): 732-749. |
26 | MAURER U, CHARVET C, WAGMAN A S, et al. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1[J]. Mol Cell, 2006, 21(6): 749-760. |
27 | YANG F, ZHANG Y F, TANG Z Y, et al. Hemin treatment protects neonatal rats from sevoflurane-induced neurotoxicity via the phosphoinositide 3-kinase/Akt pathway[J]. Life Sci, 2020, 242: 117151. |
28 | GREEN D R, LLAMBI F. Cell death signaling[J]. Cold Spring Harb Perspect Biol, 2015, 7(12): a006080. |
29 | LIU X Y, JI J, ZHAO G Q. General anesthesia affecting on developing brain: evidence from animal to clinical research[J]. J Anesth, 2020, 34(5): 765-772. |
30 | SONG Q, MA Y L, SONG J Q, et al. Sevoflurane induces neurotoxicity in young mice through FAS/FASL signaling[J]. Genet Mol Res, 2015, 14(4): 18059-18068. |
31 | WERTZ I E, KUSAM S, LAM C, et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7[J]. Nature, 2011, 471(7336): 110-114. |
32 | YON J H, DANIEL-JOHNSON J, CARTER L B, et al. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways[J]. Neuroscience, 2005, 135(3): 815-827. |
33 | CHEN X H, ZHOU X, LU D H, et al. Aberrantly expressed long noncoding RNAs are involved in sevoflurane-induced developing hippocampal neuronal apoptosis: a microarray related study[J]. Metab Brain Dis, 2016, 31(5): 1031-1040. |
34 | LI N N, ZHU R L, ZENG S, et al. The role of depolarizing activation of Na+-Ca2+ exchanger by oligodendrocyte progenitor cells in the effect of sevoflurane on myelination[J]. Life Sci, 2022, 308: 120951. |
35 | NEUDECKER V, PEREZ-ZOGHBI J F, MIRANDA-DOMíNGUEZ O, et al. Early-in-life isoflurane exposure alters resting-state functional connectivity in juvenile non-human primates[J]. Br J Anaesth, 2023, 131(6): 1030-1042. |
36 | YOUNG J T, VLASOVA R M, HOWELL B R, et al. General anaesthesia during infancy reduces white matter micro-organisation in developing rhesus monkeys[J]. Br J Anaesth, 2021, 126(4): 845-853. |
/
〈 |
|
〉 |