收稿日期: 2024-04-28
录用日期: 2024-07-16
网络出版日期: 2024-09-28
基金资助
国家自然科学基金(82273228);上海市自然科学基金(21ZR1461400)
Study on the effect and mechanism of sorting nexin 1 on inhibiting the proliferation and migration of colorectal cancer cells
Received date: 2024-04-28
Accepted date: 2024-07-16
Online published: 2024-09-28
Supported by
National Natural Science Foundation of China(82273228);Natural Science Foundation of Shanghai(21ZR1461400)
目的·分析分选链接蛋白1(sorting nexin 1,SNX1)在结直肠癌(colorectal cancer,CRC)中的表达,探索其对CRC细胞增殖及迁移的影响及潜在的分子机制。方法·基于癌症基因组图谱(The Cancer Genome Atlas,TCGA)、基因型-组织表达(Genotype-Tissue Expression,GTEx)以及基因表达综合(Gene Expression Omnibus,GEO)数据库中CRC相关的转录组数据和临床病理信息,利用基因集富集分析(Gene Set Enrichment Analysis,GSEA)软件进行富集分析。采用实时荧光定量聚合酶链反应(quantitative real-time polymerase chain reaction,qPCR)、蛋白质印迹法(Western blotting)、免疫组织化学染色(immunohistochemistry staining,IHC)检测SNX1在CRC组织和细胞中的表达。使用小干扰RNA(small interfering RNA,siRNA)敲低SNX1的表达,观察SNX1对肿瘤细胞增殖和迁移能力的影响。通过相关性分析探索SNX1影响CRC细胞迁移的潜在分子机制,在SNX1敲低细胞株中进行mRNA水平的初步验证。结果·根据对TCGA中CRC患者以及组织芯片样本数据的分析,发现SNX1在CRC组织中表达下调,且与肿瘤的直径以及是否发生远处转移具有相关性。敲低SNX1能够促进肿瘤细胞的增殖和迁移。在CRC中,SNX1的表达与结肠癌转移相关因子1(metastasis associated in colon cancer 1,MACC1)、间质-上皮转换因子(mesenchymal to epithelial transition factor,MET)以及Notch负相关,敲低SNX1后上述基因表达上调;敲低SNX1后,上皮-间质转化(epithelial to mesenchymal transition,EMT)标志物钙黏蛋白1(cadherin 1,CDH1)表达下调,波形蛋白(vimentin,VIM)、Snail家族转录因子1(Snail family transcriptional repressor 1,SNAI1)表达上调。结论·SNX1在CRC组织中表达显著降低,且与患者预后正相关;SNX1低表达能够促进CRC细胞的增殖和迁移,与MACC1-MET通路、EMT相关;SNX1可作为CRC不良预后的潜在生物标志物和新的治疗靶点。
钱立恒 , 温凯玲 , 廖颖娜 , 李书鑫 , 聂惠贞 . 分选链接蛋白1抑制结直肠癌细胞增殖和迁移的作用和机制研究[J]. 上海交通大学学报(医学版), 2024 , 44(9) : 1124 -1135 . DOI: 10.3969/j.issn.1674-8115.2024.09.007
Objective ·To explore the expression of sorting nexin 1 (SNX1) in colorectal cancer (CRC) and its impact on the proliferation and migration of CRC cells. Methods ·Transcriptomic data and clinical pathological information of CRC were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases for enrichment analysis with Gene Set Enrichment Analysis (GSEA) software. The expression of SNX1 in CRC tissues and cells was detected by quantitative real-time polymerase chain reaction (qPCR), Western blotting, and immunohistochemistry staining (IHC). Small interfering RNA (siRNA) was used to knock down the expression of SNX1 to observe its effect on tumor cell proliferation and migration. Correlation analysis was conducted to explore the potential molecular mechanisms underlying SNX1-mediated CRC cell migration, and mRNA level validation was performed in SNX1 knockdown cell lines. Results ·Analysis of CRC patients data in TCGA and tissue microarrays revealed that SNX1 expression was downregulated in CRC tissues and correlated with tumor diameter and distant metastasis. Knockdown of SNX1 enhanced tumor cell proliferation and migration. The expression of SNX1 was negatively correlated with metastasis associated in colon cancer 1 (MACC1), mesenchymal to epithelial transition factor (MET), and Notch; knockdown of SNX1 led to upregulation of these genes. Silencing SNX1 resulted in the downregulation of the epithelial marker cadherin 1 (CDH1) and the upregulation of vimentin (VIM) and Snail family transcriptional repressor 1 (SNAI1). Conclusion ·SNX1 expression was significantly downregulated in CRC tissues and correlated with patient prognosis. Low expression of SNX1 enhanced the proliferation and migration of CRC cells and was associated with the MACC1-MET pathway and EMT. SNX1 may serve as a potential biomarker for poor prognosis and a novel therapeutic target in CRC.
Key words: sorting nexin 1 (SNX1); colorectal cancer; cell migration; cell metastasis
1 | WADHWA V, PATEL N, GROVER D, et al. Interventional gastroenterology in oncology[J]. CA Cancer J Clin, 2023, 73(3): 286-319. |
2 | SIEGEL R L, MILLER K D, GODING SAUER A, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164. |
3 | VAN CUTSEM E, NORDLINGER B, ADAM R, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases[J]. Eur J Cancer, 2006, 42(14): 2212-2221. |
4 | QI Z, LAZAR C S, TRONCHèRE H, et al. Endosomal localization and function of sorting nexin 1[J]. Proc Natl Acad Sci USA, 2002, 99(10): 6767-6772. |
5 | KURTEN R C, CADENA D L, GILL G N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1[J]. Science, 1996, 272(5264): 1008-1010. |
6 | NISHIMURA Y, YOSHIOKA K, BERECZKY B, et al. Evidence for efficient phosphorylation of EGFR and rapid endocytosis of phosphorylated EGFR via the early/late endocytic pathway in a gefitinib-sensitive non-small cell lung cancer cell line[J]. Mol Cancer, 2008, 7: 42. |
7 | ZHAN X Y, ZHANG Y Q, ZHAI E T, et al. Sorting nexin-1 is a candidate tumor suppressor and potential prognostic marker in gastric cancer[J]. PeerJ, 2018, 6: e4829. |
8 | 潘泓, 廖颖娜, 盖严支, 等. 分选链接蛋白1在胰腺导管腺癌中的表达及其促进胰腺导管腺癌进展的机制研究[J]. 上海交通大学学报(医学版), 2023, 43(3): 278-292. |
8 | PAN H, LIAO Y N, GAI Y Z, et al. Expression of sorting nexin 1 in pancreatic ductal adenocarcinoma and its mechanism in promoting PDAC progress[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(3): 278-292. |
9 | HUANG Y H, HONG W Q, WEI X W. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis[J]. J Hematol Oncol, 2022, 15(1): 129. |
10 | BILLER L H, SCHRAG D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. |
11 | KAHI C J, BOLAND C R, DOMINITZ J A, et al. Colonoscopy surveillance after colorectal cancer resection: recommendations of the US multi-society task force on colorectal cancer[J]. Am J Gastroenterol, 2016, 111(3): 337-346; quiz 347. |
12 | GERSTBERGER S, JIANG Q W, GANESH K. Metastasis[J]. Cell, 2023, 186(8): 1564-1579. |
13 | ZHAO Y, LIU Y J, LIN L, et al. The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1[J]. Mol Cancer, 2018, 17(1): 69. |
14 | RADHAKRISHNAN H, WALTHER W, ZINCKE F, et al. MACC1: the first decade of a key metastasis molecule from gene discovery to clinical translation[J]. Cancer Metastasis Rev, 2018, 37(4): 805-820. |
15 | NISHIMURA Y, TAKIGUCHI S, ITO S, et al. Evidence that depletion of the sorting nexin 1 by siRNA promotes HGF-induced MET endocytosis and MET phosphorylation in a gefitinib-resistant human lung cancer cell line[J]. Int J Oncol, 2014, 44(2): 412-426. |
16 | YUAN X, WU H, HAN N, et al. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application[J]. J Hematol Oncol, 2014, 7: 87. |
17 | WANG Y D, WU B R, FARRAR E, et al. Notch-Tnf signalling is required for development and homeostasis of arterial valves[J]. Eur Heart J, 2017, 38(9): 675-686. |
18 | KIM R K, KAUSHIK N, SUH Y, et al. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer[J]. Oncotarget, 2016, 7(33): 53430-53442. |
19 | ZAVADIL J, CERMAK L, SOTO-NIEVES N, et al. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition[J]. EMBO J, 2004, 23(5): 1155-1165. |
/
〈 |
|
〉 |