收稿日期: 2024-04-30
录用日期: 2024-06-04
网络出版日期: 2024-10-28
基金资助
国家重点研发计划重点专项(2022YFC270500);上海交通大学医学院大学生创新训练计划项目(1521Y493)
Research progress in Menin-MLL interaction and its inhibitors in MLL-rearranged leukemia
Received date: 2024-04-30
Accepted date: 2024-06-04
Online published: 2024-10-28
Supported by
National Key Research and Development Program of China(2022YFC2705003);Shanghai Jiao Tong University School of Medicine Undergraduate Innovation Training(1521Y493)
混合谱系白血病(mixed lineage leukemia,MLL)基因重排(MLL-rearranged,MLL-r)引起的急性白血病亚型侵袭性高且预后不良,缺少特异性治疗手段。MLL蛋白具有组蛋白甲基转移酶活性,在胚胎发育和正常造血中必不可少,可通过功能结构域与多种蛋白质相互作用,形成大分子复合体,并通过表观修饰调节下游靶基因的表达。MLL-r转录形成MLL融合蛋白(MLL fusion protein,MLL-FP),其中MLL蛋白的C端被融合伙伴蛋白所取代。现已发现超过100种融合伙伴蛋白。分子机制研究发现,Menin蛋白是MLL-FP致白血病必不可少的辅助因子,通过与MLL-N端特定区域相互作用形成关键致病复合体,导致特定靶基因的异常表达。这为Menin-MLL相互作用抑制剂的开发提供了理论依据。截至目前,多种小分子化合物被发现能抑制Menin-MLL相互作用,包括噻吩嘧啶类、哌啶类、嘧啶类和大环拟肽类。至少7种以此为原型开发的药物进入临床试验,部分已在安全性、耐受性和疗效方面取得乐观的初步数据。该文从MLL蛋白的结构功能、MLL-r导致白血病的机制出发,对Menin-MLL蛋白相互作用抑制剂在MLL-r白血病中应用的研究进展进行综述。
关键词: MLL基因重排白血病; Menin; 靶向治疗; Menin-MLL抑制剂
方馨悦 , 石岚 , 夏思易 , 王佳璇 , 吴英理 , 何珂骏 . Menin-MLL蛋白相互作用及相关抑制剂在MLL基因重排白血病中应用的研究进展[J]. 上海交通大学学报(医学版), 2024 , 44(10) : 1287 -1298 . DOI: 10.3969/j.issn.1674-8115.2024.10.011
Acute leukemias caused by mixed lineage leukemia (MLL) gene rearrangements (MLL-r) are characterized by high invasiveness and a poor prognosis, with few specific treatment options available. MLL protein is essential in embryonic development and hematopoiesis. It exhibits histone methyltransferase activity and can interact with various proteins through its functional domains, thus regulating downstream target gene expression through epigenetic modifications. MLL-r leads to the formation of MLL fusion proteins (MLL-FPs), in which the C-terminal is replaced by fusion partner proteins; over 100 such partner proteins have been identified to date. In numerous studies of the molecular mechanism, Menin serves as an important cofacter in the leukemogenesis of MLL-FPs and participates in forming the key complex when interacting with the N terminal of MLL protein, resulting in the disregulation of certain targeted genes, which makes the development of Menin-MLL inhibitors theoretically possible. To date, several small molecules have been identified that inhibit Menin-MLL interaction, including thienopyrimidine derivatives, piperidine derivatives, pyrimidine derivatives, and macrocyclic mimic peptides. Based on these prototypes, at least seven drugs are currently undergoing clinical evaluation, with some promising preliminary data regarding safety, tolerability, and efficacy. This review summarizes the structure and function of MLL, the mechanism of the occurrence of MLL-r leukemia, and current Menin-MLL inhibitors tested in MLL-r leukemia.
Key words: MLL-rearranged leukemia; Menin; targeted therapy; Menin-MLL inhibitor
1 | FORGIONE M O, MCCLURE B J, EADIE L N, et al. KMT2A rearranged acute lymphoblastic leukaemia: unravelling the genomic complexity and heterogeneity of this high-risk disease[J]. Cancer Lett, 2020, 469: 410-418. |
2 | CHAER F E, KENG M, BALLEN K K. MLL-rearranged acute lymphoblastic leukemia[J]. Curr Hematol Malig Rep, 2020, 15(2): 83-89. |
3 | BRANDI M L, AGARWAL S K, PERRIER N D, et al. Multiple endocrine neoplasia type 1: latest insights[J]. Endocr Rev, 2021, 42(2): 133-170. |
4 | ARYAL S, ZHANG Y, WREN S, et al. Molecular regulators of HOXA9 in acute myeloid leukemia[J]. FEBS J, 2023, 290(2): 321-339. |
5 | BAI H R, ZHANG S Q, LEI H, et al. Menin-MLL protein-protein interaction inhibitors: a patent review (2014-2021)[J]. Expert Opin Ther Pat, 2022, 32(5): 507-522. |
6 | SUGEEDHA J, GAUTAM J, TYAGI S. SET1/MLL family of proteins: functions beyond histone methylation[J]. Epigenetics, 2021, 16(5): 469-487. |
7 | LI X, SONG Y C. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins[J]. J Hematol Oncol, 2021, 14(1): 56. |
8 | MEYER C, LARGHERO P, LOPES B A, et al. The KMT2A/MLL consensus gene structure: a comprehensive update for research and diagnostic implications[J]. Leukemia, 2024, 38(6): 1403-1406. |
9 | ANTUNES E T B, OTTERSBACH K. The MLL/SET family and haematopoiesis[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(8): 194579. |
10 | KHAN I, AMIN M A, EKLUND E A, et al. Regulation of HOX gene expression in AML[J]. Blood Cancer J, 2024, 14(1): 42. |
11 | JAMBHEKAR A, DHALL A, SHI Y. Roles and regulation of histone methylation in animal development[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 625-641. |
12 | YANG L, JIN M L, JEONG K W. Histone H3K4 methyltransferases as targets for drug-resistant cancers[J]. Biology, 2021, 10(7): 581. |
13 | COWELL I G, AUSTIN C A. DNA fragility at the KMT2A/MLL locus: insights from old and new technologies[J]. Open Biol, 2023, 13(1): 220232. |
14 | JUUL-DAM K L, SHUKLA N N, COOPER T M, et al. Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression[J]. Eur J Med Genet, 2023, 66(12): 104869. |
15 | MEYER C, LARGHERO P, ALMEIDA LOPES B, et al. The KMT2A recombinome of acute leukemias in 2023[J]. Leukemia, 2023, 37(5): 988-1005. |
16 | TAKAHASHI S, YOKOYAMA A. The molecular functions of common and atypical MLL fusion protein complexes[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(7): 194548. |
17 | FUJINAGA K, HUANG F, PETERLIN B M. P-TEFb: the master regulator of transcription elongation[J]. Mol Cell, 2023, 83(3): 393-403. |
18 | YUAN Y N, DU L, TAN R L, et al. Design, synthesis, and biological evaluations of DOT1L peptide mimetics targeting the protein-protein interactions between DOT1L and MLL-AF9/MLL-ENL[J]. J Med Chem, 2022, 65(11): 7770-7785. |
19 | SO C W, LIN M, AYTON P M, et al. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias[J]. Cancer Cell, 2003, 4(2): 99-110. |
20 | KUNDU A, KOWARZ E, MARSCHALEK R. The role of reciprocal fusions in MLL-r acute leukemia: studying the chromosomal translocation t(6;11)[J]. Oncogene, 2021, 40(40): 5902-5912. |
21 | CHEN B R, DESHPANDE A, BARBOSA K, et al. A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML[J]. Blood, 2021, 137(24): 3403-3415. |
22 | VERSCHUUR A V D, KOK A S M, MORSINK F H M, et al. Diagnostic utility of menin immunohistochemistry in patients with multiple endocrine neoplasia type 1 syndrome[J]. Am J Surg Pathol, 2023, 47(7): 785-791. |
23 | BIANCANIELLO C, D'ARGENIO A, GIORDANO D, et al. Investigating the effects of amino acid variations in human menin[J]. Molecules, 2022, 27(5): 1747. |
24 | LEI H, ZHANG S Q, FAN S, et al. Recent progress of small molecule menin-MLL interaction inhibitors as therapeutic agents for acute leukemia[J]. J Med Chem, 2021, 64(21): 15519-15533. |
25 | KüHN M W M, GANSER A. The menin story in acute myeloid leukaemia: the road to success[J]. Br J Haematol, 2024. DOI: 10. 1111/bjh.19508. |
26 | ISSA G C, RAVANDI F, DINARDO C D, et al. Therapeutic implications of menin inhibition in acute leukemias[J]. Leukemia, 2021, 35(9): 2482-2495. |
27 | THOMAS X. Small molecule menin inhibitors: novel therapeutic agents targeting acute myeloid leukemia with KMT2A rearrangement or NPM1 mutation[J]. Oncol Ther, 2024, 12(1): 57-72. |
28 | GREMBECKA J, HE S H, SHI A B, et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia[J]. Nat Chem Biol, 2012, 8(3): 277-284. |
29 | KüHN M W, SONG E, FENG Z H, et al. Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia[J]. Cancer Discov, 2016, 6(10): 1166-1181. |
30 | RASOULI M, BLAIR H, TROESTER S, et al. The MLL-menin interaction is a therapeutic vulnerability in NUP98-rearranged AML[J]. Hemasphere, 2023, 7(8): e935. |
31 | SHI A B, MURAI M J, HE S H, et al. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia[J]. Blood, 2012, 120(23): 4461-4469. |
32 | BORKIN D, HE S H, MIAO H Z, et al. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo[J]. Cancer Cell, 2015, 27(4): 589-602. |
33 | BORKIN D, POLLOCK J, KEMPINSKA K, et al. Property focused structure-based optimization of small molecule inhibitors of the protein-protein interaction between menin and mixed lineage leukemia (MLL)[J]. J Med Chem, 2016, 59(3): 892-913. |
34 | BORKIN D, KLOSSOWSKI S, POLLOCK J, et al. Complexity of blocking bivalent protein-protein interactions: development of a highly potent inhibitor of the menin-mixed-lineage leukemia interaction[J]. J Med Chem, 2018, 61(11): 4832-4850. |
35 | BRZEZINKA K, NEVEDOMSKAYA E, LESCHE R, et al. Characterization of the menin-MLL interaction as therapeutic cancer target[J]. Cancers, 2020, 12(1): 201. |
36 | KLOSSOWSKI S, MIAO H Z, KEMPINSKA K, et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia[J]. J Clin Invest, 2020, 130(2): 981-997. |
37 | ERBA H P, FATHI A T, ISSA G C, et al. Update on a phase 1/2 first-in-human study of the menin-KMT2A (MLL) inhibitor ziftomenib (KO-539) in patients with relapsed or refractory acute myeloid leukemia[J]. Blood, 2022, 140(Supplement 1): 153-156. |
38 | HE S H, SENTER T J, POLLOCK J, et al. High-affinity small-molecule inhibitors of the menin-mixed lineage leukemia (MLL) interaction closely mimic a natural protein-protein interaction[J]. J Med Chem, 2014, 57(4): 1543-1556. |
39 | XU S L, AGUILAR A, XU T F, et al. Design of the first-in-class, highly potent irreversible inhibitor targeting the menin-MLL protein-protein interaction[J]. Angew Chem Int Ed Engl, 2018, 57(6): 1601-1605. |
40 | AGUILAR A, ZHENG K, XU T F, et al. Structure-based discovery of M-89 as a highly potent inhibitor of the menin-mixed lineage leukemia (menin-MLL) protein-protein interaction[J]. J Med Chem, 2019, 62(13): 6015-6034. |
41 | XU S L, AGUILAR A, HUANG L Y, et al. Discovery of M-808 as a highly potent, covalent, small-molecule inhibitor of the menin-MLL interaction with strong in vivo antitumor activity[J]. J Med Chem, 2020, 63(9): 4997-5010. |
42 | ZHANG M, AGUILAR A, XU S L, et al. Discovery of M-1121 as an orally active covalent inhibitor of menin-MLL interaction capable of achieving complete and long-lasting tumor regression[J]. J Med Chem, 2021, 64(14): 10333-10349. |
43 | KRIVTSOV A V, EVANS K, GADREY J Y, et al. A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia[J]. Cancer Cell, 2019, 36(6): 660-673.e11. |
44 | ISSA G C, ALDOSS I, DIPERSIO J, et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia[J]. Nature, 2023, 615(7954): 920-924. |
45 | FORTUNA P, LINHARES B M, PUROHIT T, et al. Covalent and noncovalent constraints yield a figure eight-like conformation of a peptide inhibiting the menin-MLL interaction[J]. Eur J Med Chem, 2020, 207: 112748. |
46 | ZHOU H B, LIU L, HUANG J, et al. Structure-based design of high-affinity macrocyclic peptidomimetics to block the menin-mixed lineage leukemia 1 (MLL1) protein-protein interaction[J]. J Med Chem, 2013, 56(3): 1113-1123. |
47 | MCGEEHAN J. A first-in-class Menin-MLL1 antagonist for the treatment of MLL-r and NPM1 mutant leukemias[C]//Proceedings of the 111th Annual Meeting of the American Association for Cancer Research (AACR). Philadelphia (PA): AACR, 2020: Abstract DDT01-01. |
48 | ALDOSS I, ISSA G C, THIRMAN M, et al. Revumenib monotherapy in patients with relapsed/refractory KMT2Ar acute leukemia: topline efficacy and safety results from the pivotal augment-101 phase 2 study[J]. Blood, 2023, 142(Supplement 2): LBA-5-LBA-5. |
49 | ZWAAN C M, SHUKLA N, KARRAS N, et al. Pivotal phase 2 results of AUGMENT-101 for revumenib in KMT2Ar acute leukemia: pediatric experience[C]//2024 American Society of Pediatric Hematology/Oncology (ASPHO). Seattle, Washington: ASPHO, 2024: Abstract 2002. |
50 | PERNER F, STEIN E M, WENGE D V, et al. MEN1 mutations mediate clinical resistance to menin inhibition[J]. Nature, 2023, 615(7954): 913-919. |
51 | MAURO G. Early data with revumenib combo show 100% ORR in relapsed/refractory AML[EB/OL]. (2023-12-09)[2024-04-30]. https://www.cancernetwork.com/view/early-data-with-revumenib-combo-show-100-orr-in-relapsed-refractory-aml. |
52 | Syndax. Syndax Investor Meeting & American Society of Hematology Meeting[EB/OL]. (2023-12-11)[2024-04-30]. https://ir.syndax.com/static-files/aaa432c9-146c-4f4c-9a43-11321505a6b5. |
53 | ERBA H, WANG E, ISSA G, et al. AML-475 activity, tolerability, and resistance profile of the menin inhibitor ziftomenib in adults with relapsed/refractory NPM1-mutated AML[J]. Clin Lymphoma Myeloma Leuk, 2023, 23: S304-S305. |
54 | RAUSCH J, DZAMA M M, DOLGIKH N, et al. Menin inhibitor ziftomenib (KO-539) synergizes with drugs targeting chromatin regulation or apoptosis and sensitizes acute myeloid leukemia with MLL rearrangement or NPM1 mutation to venetoclax[J]. Haematologica, 2023, 108(10): 2837-2843. |
55 | Kura Oncology. Developing precision medicines for the treatment of cancer[EB/OL]. (2024-01-30) [2024-04-30]. https://ir.kuraoncology.com/static-files/29767eca-422c-42a3-9d84-0c6d9c2a a96d. |
56 | SOMANATH P, LU D, LAW B, et al. Preclinical activity of irreversible Menin inhibitor, BMF-219, in chronic lymphocytic leukemia[J]. J Clin Oncol, 2022, 40(16_suppl): 7541. |
57 | RAVANDI-KASHANI F, KISHTAGARI A, CARRAWAY H, et al. P587: COVALENT-101: a phase 1 study of BMF-219, a novel oral irreversible menin inhibitor, in patients with relapsed/refractory acute leukemia, diffuse large B-cell lymphoma, and multiple myeloma[J]. Hemasphere, 2022, 6: 486-487. |
58 | MOMIN A A, RUGHWANI T, TANATAWEETHUM N, et al. Abstract 3314: molecular profiling of covalent menin inhibitor, BMF-219, in KRAS-mutated solid tumors[J]. Cancer Res, 2024, 84(6_ Supplement): 3314. |
59 | SOMANATH P, MOURYA S, LI W Q, et al. 113-LB: oral menin inhibitor, BMF-219, displays a significant and durable reduction in HbA1c in a type 2 diabetes mellitus rat model[J]. Diabetes, 2022, 71(Supplement_1): 113-LB. |
60 | LANCET J, RAVANDI F, MONTESINOS P, et al. Covalent menin inhibitor BMF-219 in patients with relapsed or refractory (R/R) acute leukemia (AL): preliminary phase 1 data from the COVALENT-101 study[J]. Blood, 2023, 142(Supplement 1): 2916. |
61 | NUMATA M, HAGINOYA N, SHIROISHI M, et al. A novel Menin-MLL1 inhibitor, DS-1594a, prevents the progression of acute leukemia with rearranged MLL1 or mutated NPM1[J]. Cancer Cell Int, 2023, 23(1): 36. |
62 | CIAURRO V, KONOPLEVA M Y, DAVER N, et al. Synergistic growth inhibition of NPM1 mutant AML PDX by combined therapy with BCL-2 inhibitor venetoclax (ABT-199) and menin inhibitor DS-1594b in vivo[J]. Blood, 2023, 142(Supplement 1): 4169. |
63 | EGUCHI K, SHIMIZU T, KATO D, et al. Preclinical evaluation of a novel orally bioavailable menin-MLL interaction inhibitor, DSP-5336, for the treatment of acute leukemia patients with MLL-rearrangement or NPM1 mutation[J]. Blood, 2021, 138(Supplement 1): 3339. |
64 | DAVER N, ZEIDNER J F, YUDA J, et al. Phase 1/2 first-in-human study of the menin-MLL inhibitor DSP-5336 in patients with relapsed or refractory acute leukemia[J]. Blood, 2023, 142(Supplement 1): 2911. |
65 | KWON M C, QUEROLLE O, DAI X D, et al. Pharmacological characterization of JNJ-75276617, a menin-KMT2A inhibitor, as targeted treatment for KMT2A-altered and NPM1-mutant acute leukemia[J]. Blood, 2022, 140(Supplement 1): 5928-5929. |
66 | JABBOUR E, SEARLE E, ABDUL-HAY M, et al. A first-in-human phase 1 study of the menin-KMT2A (MLL1) inhibitor JNJ-75276617 in adult patients with relapsed/refractory acute leukemia harboring KMT2A or NPM1 alterations[J]. Blood, 2023, 142(Supplement 1): 57. |
67 | LIBBRECHT C, XIE H M, KINGSLEY M C, et al. Menin is necessary for long term maintenance of meningioma-1 driven leukemia[J]. Leukemia, 2021, 35(5): 1405-1417. |
/
〈 |
|
〉 |