收稿日期: 2024-06-02
录用日期: 2024-07-05
网络出版日期: 2024-11-28
基金资助
国家重点研发计划(2023YFC2706201);国家自然科学基金(81770380);上海市科学技术委员会项目(20MC1920400)
Analysis of clinical and genetic characteristics of 18 pediatric patients with Barth syndrome
Received date: 2024-06-02
Accepted date: 2024-07-05
Online published: 2024-11-28
Supported by
National Key Research and Development Program of China(2023YFC2706201);National Natural Science Foundation of China(81770380);Project of Shanghai Municipal Science and Technology Commission(20MC1920400)
目的·分析18例Barth综合征(Barth syndrome,BTHS)患儿的临床特征和遗传学特点,为BTHS的防治提供依据。方法·纳入2010年1月—2023年11月上海交通大学医学院附属上海儿童医学中心确诊为BTHS的18例患儿。收集患儿的临床资料,包括年龄、出生体质量、家族史、心电图、超声心动图,尿串联质谱检测报告,血常规、血生化检查以及基因检测结果,分析患儿的临床特征、基因检测结果以及预后。结果·18例BTHS患儿均为男性(包括2例同卵双胞胎),1例为彝族,17例为汉族。18例患儿的中位诊断年龄为3.0(1.0,5.6)个月;15例患儿发病时出现心功能下降,左室射血分数(left ventricular ejection fraction,LVEF)低于50%;15例患儿发病时出现扩张型心肌病(dilated cardiomyopathy,DCM),12例患儿出现左室致密化不全(left ventricular non-compaction,LVNC),9例患儿出现室壁肥厚。在就诊和随访期间,9例患儿出现QTc间期延长,2例患儿出现室性心律失常,9例患儿出现中性粒细胞缺乏症,10例患儿出现单核细胞增多症。13例患儿的尿串联质谱检测结果中,有8例出现3-甲基戊烯二酸尿症(3-methylglutaconic aciduria,3-MGCA)。18例患儿中共检测到15种TAZ基因突变,包含5种新发现的突变;16例患儿父母的基因检测结果发现,15例患儿的基因突变来源于母亲。中位随访时间为8.5(2.6,29.3)个月,其中12例患儿死亡,死亡的中位年龄为7.5(6.0,12.8)个月。7例死于心力衰竭(其中4例合并感染),3例猝死,1例死于心室颤动,1例患儿因意外死亡。结论·BTHS是一种罕见的累及全身多系统的遗传病,主要临床特征包括心肌病、中性粒细胞缺乏症等,该病发病早,病情重,预后差。临床上应做到早发现、早诊断、早治疗。
关键词: Barth综合征(BTHS); TAZ基因突变; 心肌病; 中性粒细胞缺乏症
詹湉柳 , 严子航 , 吴近近 , 陈浩 , 陈丽君 , 陈轶维 , 傅立军 . 18例Barth综合征患儿的临床和遗传学特征分析[J]. 上海交通大学学报(医学版), 2024 , 44(11) : 1406 -1413 . DOI: 10.3969/j.issn.1674-8115.2024.11.007
Objective ·To analyze the clinical and genetic characteristics of Chinese pediatric patients with Barth syndrome (BTHS) and provide data to support the prevention and treatment of BTHS. Methods ·Eighteen pediatric patients diagnosed with BTHS at Shanghai Children′s Medical Center, Shanghai Jiao Tong University School of Medicine, from January 2010 to November 2023, were included. Clinical data (age, birth weight, family history, electrocardiogram, echocardiogram, urine tandem mass spectrometry, complete blood count, blood biochemistry, and genetic test results) were collected to analyze the clinical characteristics, genetic findings, and prognoses of the patients. Results ·The study included 18 male patients with BTHS (including 2 monozygotic twins), consisting of one Yi ethnic and 17 Han Chinese patients. The median age at diagnosis was 3.0 (1.0, 5.6) months. Fifteen patients experienced decreased cardiac function at disease onset, with a left ventricular ejection fraction (LVEF) below 50%. Dilated cardiomyopathy (DCM) was observed in 15 patients, left ventricular non-compaction (LVNC) in 12 patients, and myocardial hypertrophy in 9 patients. During the diagnosis and follow-up, QTc interval prolongation occurred in 9 patients, ventricular arrhythmias in 2 patients, neutropenia in 9 patients, and monocytosis in 10 patients. Urine tandem mass spectrometry revealed 3-methylglutaconic aciduria (3-MGCA) in 8 of 13 tested patients. Fifteen types of TAZ gene mutation were identified in the 18 patients, including 5 novel mutations. Genetic testing of the parents of 16 patients indicated maternal inheritance in 15 cases. The median follow-up period was 8.5 (2.6, 29.3) months, during which 12 patients died. The median age at death was 7.5 (6.0, 12.8) months. Causes of death included heart failure (7 cases, with 4 concurrent infections), sudden death (3 cases), ventricular fibrillation (1 case), and accidental death (1 case). Conclusion ·BTHS is a rare genetic disorder with multisystem involvement. Its primary clinical manifestations include cardiomyopathy and neutropenia. The condition typically presents early in life, with severe progression and poor prognosis. Prompt recognition, accurate diagnosis, and early intervention are essential for managing this disease.
Key words: Barth syndrome (BTHS); TAZ gene mutation; cardiomyopathy; neutropenia
1 | BARTH P G, SCHOLTE H R, BERDEN J A, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes[J]. J Neurol Sci, 1983, 62(1/2/3): 327-355. |
2 | MILLER P C, REN M D, SCHLAME M, et al. A Bayesian analysis to determine the prevalence of Barth syndrome in the pediatric population[J]. J Pediatr, 2020, 217: 139-144. |
3 | ROBERTS A E, NIXON C, STEWARD C G, et al. The Barth Syndrome Registry: distinguishing disease characteristics and growth data from a longitudinal study[J]. Am J Med Genet A, 2012, 158A(11): 2726-2732. |
4 | LIPSHULTZ S E, LAW Y M, ASANTE-KORANG A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association[J]. Circulation, 2019, 140(1): e9-e68. |
5 | JENNI R, OECHSLIN E, SCHNEIDER J, et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy[J]. Heart, 2001, 86(6): 666-671. |
6 | STEWARD C G, GROVES S J, TAYLOR C T, et al. Neutropenia in Barth syndrome: characteristics, risks, and management[J]. Curr Opin Hematol, 2019, 26(1): 6-15. |
7 | CLARKE S L, BOWRON A, GONZALEZ I L, et al. Barth syndrome[J]. Orphanet J Rare Dis, 2013, 8(1): 23. |
8 | KANG S L, FORSEY J, DUDLEY D, et al. Clinical characteristics and outcomes of cardiomyopathy in Barth syndrome: the UK experience[J]. Pediatr Cardiol, 2016, 37(1): 167-176. |
9 | SPENCER C T, BRYANT R M, DAY J, et al. Cardiac and clinical phenotype in Barth syndrome[J]. Pediatrics, 2006, 118(2): e337-e346. |
10 | PANG J, BAO Y, MITCHELL-SILBAUGH K, et al. Barth syndrome cardiomyopathy: an update [J]. Genes (Basel), 2022, 13(4): 231-241. |
11 | GARLID A O, SCHAFFER C T, KIM J, et al. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome[J]. Gene, 2020, 726: 144148. |
12 | CONSORTIUM U. UniProt: the universal protein knowledgebase in 2023[J]. Nucleic Acids Res, 2023, 51(D1): D523-D531. |
13 | IMAI-OKAZAKI A, KISHITA Y, KOHDA M, et al. Barth syndrome: different approaches to diagnosis[J]. J Pediatr, 2018, 193: 256-260. |
14 | D'ADAMO P, FASSONE L, GEDEON A, et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies[J]. Am J Hum Genet, 1997, 61(4): 862-867. |
15 | CANTLAY A M, SHOKROLLAHI K, ALLEN J T, et al. Genetic analysis of the G4.5 gene in families with suspected Barth syndrome[J]. J Pediatr, 1999, 135(3): 311-315. |
16 | RIGAUD C, LEBRE A S, TOURAINE R, et al. Natural history of Barth syndrome: a national cohort study of 22 patients[J]. Orphanet J Rare Dis, 2013, 8: 70. |
17 | HIRONO K, HATA Y, NAKAZAWA M, et al. Clinical and echocardiographic impact of tafazzin variants on dilated cardiomyopathy phenotype in left ventricular non-compaction patients in early infancy[J]. Circ J, 2018, 82(10): 2609-2618. |
18 | SABBAH H N. Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide[J]. Heart Fail Rev, 2021, 26(2): 237-253. |
19 | THOMPSON W R, MANUEL R, ABBRUSCATO A, et al. Long-term efficacy and safety of elamipretide in patients with Barth syndrome: 168-week open-label extension results of TAZPOWER[J]. Genet Med, 2024, 26(7): 101138. |
20 | HORNBY B, THOMPSON W R, ALMUQBIL M, et al. Natural history comparison study to assess the efficacy of elamipretide in patients with Barth syndrome[J]. Orphanet J Rare Dis, 2022, 17(1): 336. |
21 | SCHAFER C, MOORE V, DASGUPTA N, et al. The effects of PPAR stimulation on cardiac metabolic pathways in Barth syndrome mice[J]. Front Pharmacol, 2018, 9: 318. |
22 | HUANG Y, POWERS C, MOORE V, et al. The PPAR pan-agonist bezafibrate ameliorates cardiomyopathy in a mouse model of Barth syndrome[J]. Orphanet J Rare Dis, 2017, 12(1): 49. |
23 | DABNER L, PIELES G E, STEWARD C G, et al. Treatment of Barth syndrome by cardiolipin manipulation (CARDIOMAN) with bezafibrate: protocol for a randomized placebo-controlled pilot trial conducted in the nationally commissioned Barth syndrome service[J]. JMIR Res Protoc, 2021, 10(5): e22533. |
24 | ZEGALLAI H M, HATCH G M. Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets[J]. Mol Cell Biochem, 2021, 476(3): 1605-1629. |
25 | THOMPSON R, JEFFERIES J, WANG S Y, et al. Current and future treatment approaches for Barth syndrome[J]. J Inherit Metab Dis, 2022, 45(1): 17-28. |
26 | LI Y, GODOWN J, TAYLOR C L, et al. Favorable outcomes after heart transplantation in Barth syndrome[J]. J Heart Lung Transplant, 2021, 40(10): 1191-1198. |
/
〈 |
|
〉 |