收稿日期: 2024-10-28
录用日期: 2024-11-19
网络出版日期: 2025-03-28
基金资助
上海市卫生健康委员会临床研究专项(20214Y0123);上海交通大学医学院附属新华医院学科攀峰计划(XKPF2024B500)
Functional MRI study on anxiety-enhanced temporomandibular joint pain
Received date: 2024-10-28
Accepted date: 2024-11-19
Online published: 2025-03-28
Supported by
Clinical Research Project of Shanghai Municipal Health Commission(20214Y0123);Construction Project of the “Discipline Peak-Climbing Plan” of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine(XKPF2024B500)
目的·利用功能磁共振成像探讨焦虑情绪刺激颞下颌关节紊乱病疼痛患者的脑功能变化。方法·纳入2021年11月—2023年9月在上海交通大学医学院附属新华医院口腔科就诊的颞下颌关节疼痛活动期患者30例,对其给予从国际情感图片系统中选取的负性情绪图片和中性情绪图片组成的任务程序进行焦虑情绪刺激,并进行功能磁共振成像扫描。通过FSL 5.0.6软件进行一般线性模型处理找出激活的脑区。分别通过视觉模拟评分法(Visual Analogue Scale,VAS)和状态-特质焦虑量表(State-Trait Anxiety Inventory,STAI)记录受试者焦虑刺激前后的疼痛程度和焦虑程度,并使用SPSS 20.0软件对焦虑刺激前后的疼痛程度和焦虑程度进行配对 t检验。结果·负性情绪图片刺激后,颞下颌关节紊乱病受试者焦虑程度显著增加( P<0.001),并且疼痛程度加重( P<0.001);功能磁共振成像扫描过程中,颞下颌关节疼痛程度随着负性情绪图片的不断刺激而加重,随着中性情绪图片的出现而缓解。在刺激过程中,主要激活的脑区包括杏仁核、海马、前扣带回、丘脑、枕叶皮层和岛叶;去除中性对照情绪后主要激活的脑区包括枕叶皮层、前扣带回和杏仁核。结论·颞下颌关节疼痛患者受到焦虑情绪刺激后,疼痛程度显著增强。并且受试者以海马为中心的痛觉过敏通路相关脑区和痛及情绪调节网络相关的丘脑-边缘系统功能脑区存在显著激活。
孙一丹 , 杨鑫 . 焦虑增强颞下颌关节疼痛的脑功能磁共振成像研究[J]. 上海交通大学学报(医学版), 2025 , 45(3) : 342 -348 . DOI: 10.3969/j.issn.1674-8115.2025.03.011
Objective ·To detect the active brain regions in patients experiencing pain associated with temporomandibular disorder under anxiety emotion stimulation by using functional magnetic resonance imaging (fMRI). Methods ·A total of 30 temporomandibular disorder patients with spontaneous pain were included, who visited the Department of Stomatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, from November 2021 to September 2023. A task program consisting of negative and medium pictures chosen from the International Affective Picture System (IAPS) was used to stimulate anxiety in the volunteers during fMRI scanning. The activated brain regions were identified by processing the data with the general linear model using FSL 5.0.6 software. The pain levels and anxiety levels of the subjects before and after anxiety stimulation were recorded by using the Visual Analogue Scale (VAS) and State-Trait Anxiety Inventory (STAI). Paired t-tests were then conducted by using SPSS 20.0 software. Results ·After stimulation with negative pictures, the anxiety levels of the subjects with temporomandibular disorder significantly increased ( P<0.001), and the pain levels also worsened ( P<0.001). The degree of temporomandibular joint pain aggravated with the stimulation of negative emotional pictures and improved with the neutral pictures. The main brain regions activated during the task included amygdala, hippocampus, anterior cingulate gyrus, thalamus, occipital cortex, and insula. Among them, the occipital cortex, anterior cingulate gyrus, and amygdala were the main brain regions activated after removing neutral control stimulation. Conclusion ·The aggravation of anxiety can increase the temporomandibular joint pain level in patients with temporomandibular disorder. There is significant activation in the brain regions related to the hippocampus-centered hyperalgesia reaction and the thalamic-limbic system and the thalamic-limbic system, which are involved in pain and emotion regulation networks.
1 | RONGO R, MICHELOTTI A, PEDERSEN T K, et al. Management of temporomandibular joint arthritis in children and adolescents: an introduction for orthodontists[J]. Orthod Craniofac Res, 2023, 26(Suppl 1): 151-163. |
2 | ASSIRI K. Relationships between personality factors and DC/TMD Axis Ⅱ scores of psychosocial impairment among patients with pain related temporomandibular disorders[J]. Sci Rep, 2024, 14: 26869. |
3 | LIU S N, CHANG C H, LIN C J, et al. Modified dialectical behavior therapy-informed transdiagnostic intervention for emotional disorders: protocol for a randomized controlled trial[J]. BMC Psychiatry, 2024, 24(1): 771. |
4 | JIANG Y, OATHES D, HUSH J, et al. Perturbed connectivity of the amygdala and its subregions with the central executive and default mode networks in chronic pain[J]. Pain, 2016, 157(9): 1970-1978. |
5 | RESTREPO C, ORTIZ A M, HENAO A C, et al. Association between psychological factors and temporomandibular disorders in adolescents of rural and urban zones[J]. BMC Oral Health, 2021, 21(1): 140. |
6 | PASANTA D, HE J L, FORD T, et al. Functional MRS studies of GABA and glutamate/Glx: a systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2023, 144: 104940. |
7 | KOBAYASHI Y, KURATA J, SEKIGUCHI M, et al. Augmented cerebral activation by lumbar mechanical stimulus in chronic low back pain patients: an fMRI study[J]. Spine, 2009, 34(22): 2431-2436. |
8 | KLEPZIG K, DOMIN M, KORDASS B, et al. Pain catastrophizing and functional activation during occlusion in TMD patients: an interventional study[J]. Hum Brain Mapp, 2024, 45(15): e70051. |
9 | SCHIFFMAN E, OHRBACH R, TRUELOVE E, et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group[J]. J Oral Facial Pain Headache, 2014, 28(1): 6-27. |
10 | BRANCO D, GON?ALVES ó F, BADIA S B I. A systematic review of International Affective Picture System (IAPS) around the world[J]. Sensors (Basel), 2023, 23(8): 3866. |
11 | KNOWLES K A, OLATUNJI B O. Specificity of trait anxiety in anxiety and depression: meta-analysis of the State-Trait Anxiety Inventory[J]. Clin Psychol Rev, 2020, 82: 101928. |
12 | BALIKI M N, VANIA APKARIAN A. Nociception, pain, negative moods, and behavior selection[J]. Neuron, 2015, 87(3): 474-491. |
13 | SEYMOUR B, CROOK R J, CHEN Z S. Post-injury pain and behaviour: a control theory perspective[J]. Nat Rev Neurosci, 2023, 24(6): 378-392. |
14 | LAN?ON K, SéGUéLA P. Dysregulated neuromodulation in the anterior cingulate cortex in chronic pain[J]. Front Pharmacol, 2023, 14: 1289218. |
15 | SONG Y C, WANG X Z, SU Q, et al. Pain-discriminating information decoded from spatiotemporal patterns of hemodynamic responses measured by fMRI in the human brain[J]. Hum Brain Mapp, 2024, 45(16): e70065. |
16 | YOSHINO A, OKAMOTO Y, ONODA K, et al. Sadness enhances the experience of pain via neural activation in the anterior cingulate cortex and amygdala: an fMRI study[J]. Neuroimage, 2010, 50(3): 1194-1201. |
17 | LIU W Q, CHEN Q Y, LI X H, et al. Cortical tagged synaptic long-term depression in the anterior cingulate cortex of adult mice[J]. J Neurosci, 2024, 44(35): e0028242024. |
18 | SUENAGA S, NAGAYAMA K, NAGASAWA T, et al. The usefulness of diagnostic imaging for the assessment of pain symptoms in temporomandibular disorders[J]. Jpn Dent Sci Rev, 2016, 52(4): 93-106. |
19 | CHEN L Q, LV X J, GUO Q H, et al. Asymmetric activation of microglia in the hippocampus drives anxiodepressive consequences of trigeminal neuralgia in rodents[J]. Br J Pharmacol, 2023, 180(8): 1090-1113. |
20 | MCNAUGHTON N, GRAY J A. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety[J]. J Affect Disord, 2000, 61(3): 161-176. |
21 | HE S S, LI F, GU T, et al. Reduced corticostriatal functional connectivity in temporomandibular disorders[J]. Hum Brain Mapp, 2018, 39(6): 2563-2572. |
22 | ICHESCO E, QUINTERO A, CLAUW D J, et al. Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: a pilot study[J]. Headache, 2012, 52(3): 441-454. |
23 | CHEN Y R, TONG S Y, XU Y L, et al. Involvement of basolateral amygdala-rostral anterior cingulate cortex in mechanical allodynia and anxiety-like behaviors and potential mechanisms of electroacupuncture[J]. CNS Neurosci Ther, 2024, 30(9): e70035. |
24 | UEDA S, TAKEMOTO-KIMURA S. Exploring the molecular and neuronal bases involved in central amygdala-dependent control of emotional behaviors[J]. Nihon Yakurigaku Zasshi, 2024, 159(5): 316-320. |
25 | SESSLE B J. Modulatory processes in craniofacial pain states[J]. Adv Neurobiol, 2024, 35: 107-124. |
/
〈 |
|
〉 |