收稿日期: 2024-12-10
录用日期: 2025-02-18
网络出版日期: 2025-05-15
基金资助
国家自然科学基金(T2293730)
Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system
Received date: 2024-12-10
Accepted date: 2025-02-18
Online published: 2025-05-15
Supported by
National Natural Science Foundation of China(T2293730)
小胶质细胞是中枢神经系统(central nervous system,CNS)中的常驻免疫细胞,其在大脑稳态维持和神经保护中发挥双刃剑的作用。在正常状态下,小胶质细胞通过监测环境变化维持大脑的稳态。当发生神经损伤或受到某些病理性刺激时,小胶质细胞会迅速激活并启动一系列复杂的免疫反应,从而引发神经炎症。小胶质细胞的适当激活可以通过抑制或清除多种病原体来保护大脑,但是过度的神经炎症则会导致神经元损伤,甚至死亡。这种炎症反应失调是多种CNS炎症性疾病(如阿尔茨海默病、帕金森病、脓毒症相关性脑病、缺血性脑卒中等)病理发展的核心特征之一。近年来,随着单细胞测序、蛋白质组学和基因编辑等技术的快速发展,针对小胶质细胞参与CNS炎症性疾病的分子机制研究取得了重要进展,尤其是在炎症小体活化、表观遗传修饰、代谢重编程等方面。然而,由于小胶质细胞在不同的病理条件下表现出异质性和双重性,临床实践上靶向小胶质细胞的治疗手段仍未能普遍应用。该文以小胶质细胞为切入点,介绍其参与CNS炎症性疾病发生发展的分子机制及靶向调控治疗策略,旨在为后续精准调控小胶质细胞功能、开发更多靶向治疗药物提供理论参考。
关键词: 小胶质细胞; 神经炎症; 中枢神经系统炎症性疾病; 致病机制; 靶向治疗
禹恺 , 帅哲玮 , 黄洪军 , 罗艳 . 小胶质细胞在中枢神经系统炎症性疾病中的作用和机制研究进展[J]. 上海交通大学学报(医学版), 2025 , 45(5) : 630 -638 . DOI: 10.3969/j.issn.1674-8115.2025.05.012
Microglia are the resident immune cells in the central nervous system (CNS), and play a dual role in maintaining brain homeostasis and mediating neuroprotection. Under normal conditions, microglia maintain brain homeostasis by monitoring environmental changes. When nerve damage or certain pathological stimuli occur, microglia are rapidly activated and initiate a series of complex immune responses to induce neuroinflammation. This proper activation of microglia can protect the brain by inhibiting or clearing various pathogens, but excessive neuroinflammation can lead to neuronal damage and even death. This imbalance of inflammatory response is one of the core features of pathological development of many CNS inflammatory diseases, such as Alzheimer′s disease, Parkinson′s disease, sepsis-associated encephalopathy, and ischemic strokes. In recent years, with the rapid development of frontier biotechnology such as single-cell sequencing, proteinomics and gene editing, important progress has been made in understanding the molecular mechanism by which microglia participate in CNS inflammatory diseases, especially in the activation of inflammatory corpuscles, epigenetic modifications, and metabolic reprogramming. However, due to the heterogeneity and duality of microglia under different pathological conditions, therapeutic methods targeting microglia have not yet been widely used in clinical practice. In summary, this article takes microglia as the starting point and introduces the molecular mechanisms of their involvement in the occurrence and development of CNS inflammatory diseases and its targeted regulatory treatment strategy, aiming to provide theoretical reference for the subsequent precise regulation of microglia function and the development of more targeted therapeutic drugs.
1 | CROESE T, CASTELLANI G, SCHWARTZ M. Immune cell compartmentalization for brain surveillance and protection[J]. Nat Immunol, 2021, 22(9): 1083-1092. |
2 | SUBHRAMANYAM C S, WANG C, HU Q D, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases[J]. Semin Cell Dev Biol, 2019, 94: 112-120. |
3 | XIN Y W, TIAN M, DENG S X, et al. The key drivers of brain injury by systemic inflammatory responses after sepsis: microglia and neuroinflammation[J]. Mol Neurobiol, 2023, 60(3): 1369-1390. |
4 | CAFFAREL M M, BRAZA M S. Microglia and metastases to the central nervous system: victim, ravager, or something else?[J]. J Exp Clin Cancer Res, 2022, 41(1): 327. |
5 | GINHOUX F, GRETER M, LEBOEUF M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005): 841-845. |
6 | ELMORE M R P, NAJAFI A R, KOIKE M A, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain[J]. Neuron, 2014, 82(2): 380-397. |
7 | SPITTAU B, DOKALIS N, PRINZ M. The role of TGFβ signaling in microglia maturation and activation[J]. Trends Immunol, 2020, 41(9): 836-848. |
8 | PAGANI F, PAOLICELLI R C, MURANA E, et al. Defective microglial development in the hippocampus of Cx3cr1 deficient mice[J]. Front Cell Neurosci, 2015, 9: 111. |
9 | BORST K, DUMAS A A, PRINZ M. Microglia: immune and non-immune functions[J]. Immunity, 2021, 54(10): 2194-2208. |
10 | VIDAL-ITRIAGO A, RADFORD R A W, ARAMIDEH J A, et al. Microglia morphophysiological diversity and its implications for the CNS[J]. Front Immunol, 2022, 13: 997786. |
11 | BALL J B, GREEN-FULGHAM S M, WATKINS L R. Mechanisms of microglia-mediated synapse turnover and synaptogenesis[J]. Prog Neurobiol, 2022, 218: 102336. |
12 | WANG W B, LI Y Z, MA F L, et al. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer′s disease model by restoring BDNF signaling[J]. Brain Behav Immun, 2023, 113: 275-288. |
13 | STRIZOVA Z, BENESOVA I, BARTOLINI R, et al. M1/M2 macrophages and their overlaps: myth or reality?[J]. Clin Sci (Lond), 2023, 137(15): 1067-1093. |
14 | LONG Y, LI X Q, DENG J, et al. Modulating the polarization phenotype of microglia: a valuable strategy for central nervous system diseases[J]. Ageing Res Rev, 2024, 93: 102160. |
15 | BLITZ S E, KAPPEL A D, GESSLER F A, et al. Tumor-associated macrophages/microglia in glioblastoma oncolytic virotherapy: a double-edged sword[J]. Int J Mol Sci, 2022, 23(3): 1808. |
16 | SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer′s disease[J]. Lancet, 2021, 397(10284): 1577-1590. |
17 | TWAROWSKI B, HERBET M. Inflammatory processes in Alzheimer′s disease-pathomechanism, diagnosis and treatment: a review[J]. Int J Mol Sci, 2023, 24(7): 6518. |
18 | GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 359. |
19 | MALKO P, SYED MORTADZA S A, MCWILLIAM J, et al. TRPM2 channel in microglia as a new player in neuroinflammation associated with a spectrum of central nervous system pathologies[J]. Front Pharmacol, 2019, 10: 239. |
20 | DECOUT A, KATZ J D, VENKATRAMAN S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immunol, 2021, 21(9): 548-569. |
21 | JIN M H, SHIWAKU H, TANAKA H, et al. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation[J]. Nat Commun, 2021, 12(1): 6565. |
22 | BLEVINS H M, XU Y M, BIBY S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021. |
23 | ISING C, VENEGAS C, ZHANG S S, et al. NLRP3 inflammasome activation drives tau pathology[J]. Nature, 2019, 575(7784): 669-673. |
24 | WANG C, FAN L, KHAWAJA R R, et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy[J]. Nat Commun, 2022, 13(1): 1969. |
25 | BEN-SHLOMO Y, DARWEESH S, LLIBRE-GUERRA J, et al. The epidemiology of Parkinson′s disease[J]. Lancet, 2024, 403(10423): 283-292. |
26 | KALIA L V, LANG A E. Parkinson′s disease[J]. Lancet, 2015, 386(9996): 896-912. |
27 | LIU S Y, QIAO H W, SONG T B, et al. Brain microglia activation and peripheral adaptive immunity in Parkinson′s disease: a multimodal PET study[J]. J Neuroinflammation, 2022, 19(1): 209. |
28 | CALABRESI P, MECHELLI A, NATALE G, et al. Alpha-synuclein in Parkinson′s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction[J]. Cell Death Dis, 2023, 14(3): 176. |
29 | MA C M, LIU Y, LI S, et al. Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson′s disease[J]. CNS Neurosci Ther, 2023, 29(7): 2018-2035. |
30 | ZHOU X, ZHAO R, LV M F, et al. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression[J]. Brain Behav Immun, 2023, 109: 331-343. |
31 | LIU W W, WEI S Z, HUANG G D, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson′s disease mouse model[J]. FASEB J, 2020, 34(5): 6570-6581. |
32 | MARCUS R. What is multiple sclerosis?[J]. JAMA, 2022, 328(20): 2078. |
33 | KOCH-HENRIKSEN N, MAGYARI M. Apparent changes in the epidemiology and severity of multiple sclerosis[J]. Nat Rev Neurol, 2021, 17(11): 676-688. |
34 | ZIA S, RAWJI K S, MICHAELS N J, et al. Microglia diversity in health and multiple sclerosis[J]. Front Immunol, 2020, 11: 588021. |
35 | WOO M S, ENGLER J B, FRIESE M A. The neuropathobiology of multiple sclerosis[J]. Nat Rev Neurosci, 2024, 25(7): 493-513. |
36 | ZHANG Y H, HOU B H, LIANG P Y, et al. TRPV1 channel mediates NLRP3 inflammasome-dependent neuroinflammation in microglia[J]. Cell Death Dis, 2021, 12(12): 1159. |
37 | SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. |
38 | SONNEVILLE R, DE MONTMOLLIN E, POUJADE J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy[J]. Intensive Care Med, 2017, 43(8): 1075-1084. |
39 | YAN X Q, YANG K Y, XIAO Q, et al. Central role of microglia in sepsis-associated encephalopathy: from mechanism to therapy[J]. Front Immunol, 2022, 13: 929316. |
40 | GAO Q Z, HERNANDES M S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation, 2021, 44(6): 2143-2150. |
41 | SHEN Y N, ZHANG Y, DU J Y, et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation, 2021, |
42 | FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. |
43 | WANG H Q, ZHANG S Y, XIE L L, et al. Neuroinflammation and peripheral immunity: focus on ischemic stroke[J]. Int Immunopharmacol, 2023, 120: 110332. |
44 | XIA Q, ZHAN G F, MAO M, et al. TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury[J]. Exp Mol Med, 2022, 54(2): 180-193. |
45 | XIA Q, GAO S, HAN T R, et al. Sirtuin 5 aggravates microglia-induced neuroinflammation following ischaemic stroke by modulating the desuccinylation of Annexin-A1[J]. J Neuroinflammation, 2022, 19(1): 301. |
46 | PRAMANIK S, DEVI M H, CHAKRABARTY S, et al. Microglia signaling in health and disease: implications in sex-specific brain development and plasticity[J]. Neurosci Biobehav Rev, 2024, 165: 105834. |
47 | SUN Z Q, ZHANG X, SO K F, et al. Targeting microglia in Alzheimer′s disease: pathogenesis and potential therapeutic strategies[J]. Biomolecules, 2024, 14(7): 833. |
48 | LI X Y, LI Y X, JIN Y X, et al. Transcriptional and epigenetic decoding of the microglial aging process[J]. Nat Aging, 2023, 3(10): 1288-1311. |
49 | MCGARRY A, ROSANBALM S, LEINONEN M, et al. Safety, tolerability, and efficacy of NLY01 in early untreated Parkinson′s disease: a randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2024, 23(1): 37-45. |
50 | DUBOIS B, LóPEZ-ARRIETA J, LIPSCHITZ S, et al. Masitinib for mild-to-moderate Alzheimer′s disease: results from a randomized, placebo-controlled, phase 3, clinical trial[J]. Alzheimers Res Ther, 2023, 15(1): 39. |
51 | ZHAO Y J, WU X L, LI X G, et al. TREM2 is a receptor for β-amyloid that mediates microglial function[J]. Neuron, 2018, 97(5): 1023-1031.e7. |
52 | LONG H, SIMMONS A, MAYORGA A, et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer′s disease[J]. Alzheimers Res Ther, 2024, 16(1): 235. |
53 | ZHANG X L, SUBBANNA S, WILLIAMS C R O, et al. Anti-inflammatory action of BT75, a novel RARα agonist, in cultured microglia and in an experimental mouse model of Alzheimer′s disease[J]. Neurochem Res, 2023, 48(6): 1958-1970. |
54 | MA Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction[J]. Pharmacol Rev, 2023, 75(3): 487-520. |
55 | LONNEMANN N, HOSSEINI S, MARCHETTI C, et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer′s disease[J]. Proc Natl Acad Sci USA, 2020, 117(50): 32145-32154. |
56 | GORDON R, ALBORNOZ E A, CHRISTIE D C, et al. Inflammasome inhibition prevents α- synuclein pathology and dopaminergic neurodegeneration in mice[J]. Sci Transl Med, 2018, 10(465): eaah4066. |
57 | MCGINLEY M P, COHEN J A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions[J]. Lancet, 2021, 398(10306): 1184-1194. |
58 | QIN C, FAN W H, LIU Q, et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway[J]. Stroke, 2017, 48(12): 3336-3346. |
59 | LUO J, FENG Y, LI M Y, et al. Repetitive transcranial magnetic stimulation improves neurological function and promotes the anti-inflammatory polarization of microglia in ischemic rats[J]. Front Cell Neurosci, 2022, 16: 878345. |
60 | ZONG X M, DONG Y, LI Y Y, et al. Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity[J]. Transl Stroke Res, 2020, 11(3): 450-467. |
61 | WALTER H L, PIKHOVYCH A, ENDEPOLS H, et al. Transcranial-direct-current-stimulation accelerates motor recovery after cortical infarction in mice: the interplay of structural cellular responses and functional recovery[J]. Neurorehabil Neural Repair, 2022, 36(10/11): 701-714. |
/
〈 |
|
〉 |