口腔颌面外科专题

亚精胺对脂多糖诱导的小鼠颅骨炎症性骨溶解的作用研究

  • 赵心雨 ,
  • 张文超 ,
  • 陈旭卓 ,
  • 宋佳琪 ,
  • 黄慧 ,
  • 张善勇
展开
  • 1.山东第二医科大学口腔医学院,潍坊 261053
    2.上海交通大学医学院附属第九人民医院口腔外科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 200011
    3.北京大学深圳医院口腔科,深圳 518000
    4.上海交通大学医学院附属第九人民医院口腔影像科,上海 200011
赵心雨(1999—),男,硕士生;电子信箱:3130458795@qq.com
第一联系人:赵心雨、陈旭卓参与实验设计,赵心雨、宋佳琪参与论文的写作和修改,赵心雨、张文超、陈旭卓参与实验操作,赵心雨、张文超参与数据分析,张善勇、黄慧参与课题指导及文章的审阅和修改。所有作者均阅读并同意了最终稿件的提交。
张善勇,主任医师,博士;电子信箱:zhangshanyong@126.com
黄 慧,主管技师,大专;电子信箱:1974601318@qq.com

收稿日期: 2025-02-25

  录用日期: 2025-04-03

  网络出版日期: 2025-06-10

基金资助

国家自然科学基金(82301108);上海交通大学医学院附属第九人民医院“交叉”研究基金(JYJC202218)

Study on the effects of spermidine on LPS-induced inflammatory osteolysis in mouse calvaria

  • ZHAO Xinyu ,
  • ZHANG Wenchao ,
  • CHEN Xuzhuo ,
  • SONG Jiaqi ,
  • HUANG Hui ,
  • ZHANG Shanyong
Expand
  • 1.School of Stomatology, Shandong Second Medical University, Weifang 261053, China
    2.Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
    3.Department of Stomatology, Shenzhen Hospital of Peking University, Shenzhen 518000, China
    4.Department of Oral Imageology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
First author contact:ZHAO Xinyu and CHEN Xuzhuo were involved in the experimental design. ZHAO Xinyu and SONG Jiaqi contributed to the writing and revision of the manuscript. ZHAO Xinyu, ZHANG Wenchao and CHEN Xuzhuo carried out the experiments. ZHAO Xinyu and ZHANG Wenchao were responsible for data analysis. ZHANG Shanyong and HUANG Hui supervised the project, reviewed the manuscript, and provided critical revisions. All authors have read and approved the final version of the manuscript for submission.
ZHANG Shanyong, E-mail: zhangshanyong@126.com
HUANG Hui, E-mail: 1974601318@qq.com.

Received date: 2025-02-25

  Accepted date: 2025-04-03

  Online published: 2025-06-10

Supported by

National Natural Science Foundation of China(82301108);"Interdisciplinary" Research Fund of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(JYJC202218)

摘要

目的·探讨亚精胺(spermidine,SPD)在体内和体外对炎症性骨溶解的抑制作用。方法·采用CCK-8法检测不同浓度SPD对RAW264.7巨噬细胞的活性影响;采用二氯二氢荧光素乙酰酯(dichlorodihydrofluorescein diacetate,DCFH-DA)和二氢乙锭(dihydroethidium,DHE)染色液分别检测SPD对脂多糖(lipopolysaccharide,LPS)激活的RAW264.7细胞内活性氧(reactive oxygen species,ROS)水平;采用反转录实时荧光定量PCR(reverse transcription real-time fluorescence quantitative PCR,RT-qPCR)检测SPD对LPS激活的RAW264.7细胞内促炎相关基因表达的影响;采用抗酒石酸酸性磷酸酶(tartrate-resistant acid phosphatase,TRAP)染色检测SPD对小鼠原代骨髓来源巨噬细胞(bone marrow-derived macrophage,BMM)向破骨细胞分化的影响,并进一步通过RT-qPCR分析SPD对BMM诱导分化后与破骨细胞分化和功能相关基因表达的影响。构建LPS诱导的小鼠颅骨骨溶解模型,通过Micro-CT分析以及组织切片苏木精-伊红(hematoxylin-eosin,H-E)染色、TRAP染色评价SPD对炎症性骨溶解的治疗效果。结果·CCK-8结果显示,SPD达到1 000 μmol/L时,对RAW264.7细胞仍无明显细胞毒性;ROS检测结果显示,SPD可以显著抑制LPS引起的巨噬细胞内ROS水平的升高;RT-qPCR结果显示,SPD可以抑制LPS诱导的促炎相关基因的表达。TRAP染色和RT-qPCR结果显示,SPD可有效抑制核因子κB受体活化因子配体(receptor activator of nuclear factor-κB ligand,RANKL)诱导的BMM向破骨细胞分化,以及降低破骨细胞分化和功能相关基因的表达。在小鼠颅骨骨溶解模型中,Micro-CT结果显示,SPD处理组颅骨骨体积分数和骨矿物质密度均较LPS组显著升高;组织切片染色结果显示,SPD处理组炎症细胞浸润减少,破骨细胞数量减少,组织受损程度较轻。结论·SPD在体外能够抑制巨噬细胞的炎症反应,以及RANKL诱导的破骨细胞分化;在体内,SPD可改善由LPS诱导的小鼠炎症性颅骨骨溶解。

本文引用格式

赵心雨 , 张文超 , 陈旭卓 , 宋佳琪 , 黄慧 , 张善勇 . 亚精胺对脂多糖诱导的小鼠颅骨炎症性骨溶解的作用研究[J]. 上海交通大学学报(医学版), 2025 , 45(6) : 673 -683 . DOI: 10.3969/j.issn.1674-8115.2025.06.002

Abstract

Objective ·To investigate the inhibitory effects of spermidine (SPD) on inflammatory osteolysis both in vivo and in vitro. Methods ·The CCK-8 assay was used to assess the viability of RAW264.7 macrophages treated with various concentrations of SPD. The levels of intracellular reactive oxygen species (ROS) in lipopolysaccharide (LPS)-activated RAW264.7 cells were evaluated by staining with dichlorodihydrofluorescein diacetate (DCFH-DA) and dihydroethidium (DHE), respectively. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) was utilized to determine the effects of SPD on the expression of pro-inflammatory genes in LPS-activated RAW264.7 cells. Tartrate-resistant acid phosphatase (TRAP) staining was used to evaluate the effect of SPD on the differentiation of mouse primary bone marrow-derived macrophages (BMMs) into osteoclasts. RT-qPCR was employed to further analyze the effect of SPD on the expression of genes related to osteoclast differentiation and functions after BMM-induced differentiation. An LPS-induced mouse calvarial osteolysis model was constructed, and the therapeutic efficacy of SPD on inflammatory osteolysis was assessed using Micro-CT analysis, hematoxylin-eosin (H-E) staining and TRAP staining of histological sections. Results ·The CCK-8 assay showed that SPD, even at a concentration of 1 000 μmol/L, exhibited no significant cytotoxicity to RAW264.7 cells. ROS analysis revealed that SPD markedly inhibited LPS-induced elevation of intracellular ROS levels in macrophages. RT-qPCR results indicated that SPD suppressed the expression of pro-inflammatory genes induced by LPS. Both TRAP staining and RT-qPCR demonstrated that SPD effectively inhibited the differentiation of BMMs into osteoclasts induced by receptor activator of nuclear factor-κB ligand (RANKL) and reduced the expression of genes associated with osteoclast differentiation and function. In the mouse calvarial osteolysis model, Micro-CT analysis showed that the bone volume fraction and bone mineral density in the SPD-treated groups were significantly higher than those in the LPS group. Histological staining revealed that SPD treatment reduced inflammatory cell infiltration, decreased osteoclast numbers, and alleviated tissue damage. Conclusion ·SPD inhibits macrophage inflammatory responses and RANKL-induced osteoclast differentiation in vitro; in vivo, it alleviates LPS-induced inflammatory calvarial osteolysis in mice.

参考文献

[1] ZAIDI M. Skeletal remodeling in health and disease[J]. Nat Med, 2007, 13(7): 791-801.
[2] ZOU W, TEITELBAUM S L. Absence of Dap12 and the αvβ3 integrin causes severe osteopetrosis[J]. J Cell Biol, 2015, 208(1): 125-136.
[3] LIU K W, WANG Z H, LIU J B, et al. Atsttrin regulates osteoblastogenesis and osteoclastogenesis through the TNFR pathway[J]. Commun Biol, 2023, 6(1): 1251.
[4] TSUKASAKI M, TAKAYANAGI H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642.
[5] ZOFKOVA I, BLAHOS J. New molecules modulating bone metabolism: new perspectives in the treatment of osteoporosis[J]. Physiol Res, 2017, 66(Suppl 3): S341-S347.
[6] QUINN J M W, SALEH H. Modulation of osteoclast function in bone by the immune system[J]. Mol Cell Endocrinol, 2009, 310(1/2): 40-51.
[7] LEE S K, LORENZO J. Cytokines regulating osteoclast formation and function[J]. Curr Opin Rheumatol, 2006, 18(4): 411-418.
[8] GRUBER R. Osteoimmunology: inflammatory osteolysis and regeneration of the alveolar bone[J]. J Clin Periodontol, 2019, 46(Suppl 21): 52-69.
[9] ROSSA C, EHMANN K, LIU M, et al. MKK3/6-p38 MAPK signaling is required for IL-1β and TNF-α-induced RANKL expression in bone marrow stromal cells[J]. J Interferon Cytokine Res, 2006, 26(10): 719-729.
[10] OKAMOTO A, SUGI E, KOIZUMI Y, et al. Polyamine content of ordinary foodstuffs and various fermented foods[J]. Biosci Biotechnol Biochem, 1997, 61(9): 1582-1584.
[11] ALI M A, POORTVLIET E, STR?MBERG R, et al. Polyamines: total daily intake in adolescents compared to the intake estimated from the Swedish Nutrition Recommendations Objectified (SNO)[J]. Food Nutr Res, 2011, 55: 55.
[12] MADEO F, EISENBERG T, PIETROCOLA F, et al. Spermidine in health and disease[J]. Science, 2018, 359(6374): eaan2788.
[13] YUAN H, WU S X, ZHOU Y F, et al. Spermidine inhibits joints inflammation and macrophage activation in mice with collagen-induced arthritis[J]. J Inflamm Res, 2021, 14: 2713-2721.
[14] IEZAKI T, HINOI E, YAMAMOTO T, et al. Amelioration by the natural polyamine spermine of cartilage and bone destruction in rats with collagen-induced arthritis[J]. J Pharmacol Sci, 2012, 119(1): 107-111.
[15] TSUJINAKA S, SODA K, KANO Y, et al. Spermine accelerates hypoxia-initiated cancer cell migration[J]. Int J Oncol, 2011, 38(2): 305-312.
[16] TODA G, YAMAUCHI T, KADOWAKI T, et al. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis[J]. STAR Protoc, 2021, 2(1): 100246.
[17] ZHANG J, ZHU L, PENG B. Effect of BioAggregate on osteoclast differentiation and inflammatory bone resorption in vivo[J]. Int Endod J, 2015, 48(11): 1077-1085.
[18] FENG X, MCDONALD J M. Disorders of bone remodeling[J]. Annu Rev Pathol Mech Dis, 2011, 6: 121-145.
[19] GU Q L, YANG H L, SHI Q. Macrophages and bone inflammation[J]. J Orthop Translat, 2017, 10: 86-93.
[20] LIU R, LI X L, MA H, et al. Spermidine endows macrophages anti-inflammatory properties by inducing mitochondrial superoxide-dependent AMPK activation, Hif-1α upregulation and autophagy[J]. Free Radic Biol Med, 2020, 161: 339-350.
[21] KHONGKARAT P, PHUWAPRAISIRISAN P, CHANCHAO C P. Phytochemical content, especially spermidine derivatives, presenting antioxidant and antilipoxygenase activities in Thai bee pollens[J]. PeerJ, 2022, 10: e13506.
[22] FAN J J, FENG Z Y, CHEN N. Spermidine as a target for cancer therapy[J]. Pharmacol Res, 2020, 159: 104943.
[23] XU T T, LI H, DAI Z, et al. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice[J]. Aging (Albany NY), 2020, 12(7): 6401-6414.
[24] MIZUKAMI J, TAKAESU G, AKATSUKA H, et al. Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6[J]. Mol Cell Biol, 2002, 22(4): 992-1000.
[25] FUJIWARA T, ZHOU J, YE S, et al. RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival[J]. Cell Death Dis, 2016, 7(7): e2300.
[26] THOMAS D C. The phagocyte respiratory burst: historical perspectives and recent advances[J]. Immunol Lett, 2017, 192: 88-96.
[27] GE X H, TANG P Y, RONG Y L, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury[J]. Redox Biol, 2021, 41: 101932.
[28] YANG Z, MIN Z J, YU B. Reactive oxygen species and immune regulation[J]. Int Rev Immunol, 2020, 39(6): 292-298.
[29] ZENGER S, HE W T, EK-RYLANDER B, et al. Differential expression of tartrate-resistant acid phosphatase isoforms 5a and 5b by tumor and stromal cells in human metastatic bone disease[J]. Clin Exp Metastasis, 2011, 28(1): 65-73.
[30] GAI D Z, CHEN J R, STEWART J P, et al. CST6 suppresses osteolytic bone disease in multiple myeloma by blocking osteoclast differentiation[J]. J Clin Invest, 2022, 132(18): e159527.
[31] AKIRA S, TAKEDA K, KAISHO T. Toll-like receptors: critical proteins linking innate and acquired immunity[J]. Nat Immunol, 2001, 2(8): 675-680.
文章导航

/