收稿日期: 2025-01-24
录用日期: 2025-02-28
网络出版日期: 2025-06-28
基金资助
国家自然科学基金(32371244);东方英才计划;上海交通大学医学院高水平地方高校创新团队(SHSMU-ZDCX20212000);上海交通大学医学院基础医学院青年人才支持计划(2024RCZC-C-03)
Phosphatidylethanolamine promotes macrophage senescence and liver injury by activating endoplasmic reticulum stress
Received date: 2025-01-24
Accepted date: 2025-02-28
Online published: 2025-06-28
Supported by
National Natural Science Foundation of China(32371244);Eastern Talent Plan Leading Project;Innovative Research Team of High-Level Local Universities in Shanghai(SHSMU-ZDCX20212000);Youth Talent Support Program Project of the School of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine(2024RCZC-C-03)
目的·探讨磷脂酰乙醇胺(phosphatidylethanolamine,PE)对巨噬细胞衰老及其衰老相关分泌表型的影响和分子机制,以及PE在肝损伤中的病理生理学意义。方法·利用阿霉素建立巨噬细胞衰老模型,并给予PE处理。通过腹腔联合注射PE和脂多糖构建小鼠肝损伤模型,观察PE对肝损伤的影响。采用衰老相关β-半乳糖苷酶(senescence-associated β- galactosidase,SA-β-gal)染色,结合实时荧光定量PCR、Western blotting等检测细胞周期抑制蛋白p21、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白介素-6(interleukin-6,IL-6)等衰老标志物及衰老相关分泌表型生物活性因子的表达水平。通过RNA测序结合基因本体论(Gene Ontology,GO)细胞组分富集分析、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析、基因集变异分析(Gene Set Variation Analysis,GSVA)和基因集富集分析(Gene Set Enrichment Analysis,GSEA)筛选PE促进巨噬细胞衰老的信号通路及分子机制。通过体内和体外实验检测内质网应激相关通路中肌醇需求酶1α(inositol requiring enzyme 1 α,IRE1α)、剪接型X盒结合蛋白1(spliced X box binding protein 1,XBP1s)、转录激活因子6(activating transcription factor 6,ATF6)、ATF4、C/EBP同源蛋白(C/EBP homologous protein,CHOP)的表达。结果·PE显著促进巨噬细胞衰老标志物SA-β-gal、p21、p16及衰老相关分泌表型生物活性因子的表达。RNA测序分析显示内质网应激参与PE促进衰老相关分泌表型表达的作用。进一步的实验表明,PE通过激活巨噬细胞内质网应激信号通路促进巨噬细胞衰老及衰老相关分泌表型表达。体内实验证实PE通过内质网应激加剧脂多糖诱导的小鼠肝损伤。结论·PE通过激活内质网应激信号通路,促进巨噬细胞衰老及衰老相关分泌表型生物活性因子分泌,进而加重脂多糖诱导的肝损伤。
韩龙传 , 李悦 , 邹智慧 , 罗静 , 李若伊 , 张颖婷 , 唐欣欣 , 田丽红 , 陆宇恒 , 黄莺 , 贺明 , 付寅坤 . 磷脂酰乙醇胺引起内质网应激促进巨噬细胞衰老及肝损伤[J]. 上海交通大学学报(医学版), 2025 , 45(6) : 693 -704 . DOI: 10.3969/j.issn.1674-8115.2025.06.004
Objective ·To investigate the effects and molecular mechanisms of phosphatidylethanolamine (PE) on macrophage senescence and its senescence-associated secretory phenotype (SASP), as well as its pathophysiological role in liver injury. Methods ·A macrophage senescence model was established using doxorubicin (DOX), followed by PE treatment. A mouse liver injury model was generated via intraperitoneal co-administration of PE and lipopolysaccharide (LPS) to investigate the effects of PE on liver injury. Senescence markers and SASP factors, including senescence-associated β-galactosidase (SA-β-gal), cell cycle inhibitor p21, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were evaluated using SA-β-gal staining, quantitative real-time PCR, and Western blotting. RNA sequencing (RNA-seq) was performed, followed by Gene Ontology (GO) cellular component enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, Gene Set Variation Analysis (GSVA), and Gene Set Enrichment Analysis (GSEA), to explore the molecular mechanisms and signaling pathways by which PE promotes macrophage senescence. The expression of endoplasmic reticulum (ER) stress-related proteins, including inositol-requiring enzyme 1 α (IRE1α), spliced X-box binding protein 1 (XBP1s), activating transcription factor 6 (ATF6), ATF4, and C/EBP homologous protein (CHOP), was analyzed through in vivo and in vitro experiments. Results ·PE significantly promoted the expression of senescence markers SA-β-gal, p21, p16 and SASP factors. RNA-seq analysis revealed that ER stress was involved in PE-induced promotion of SASP. Further experiments demonstrated that PE activated the ER stress signaling pathway, promoting macrophage senescence and the expression of SASP factors. In vivo experiments further confirmed that PE exacerbated LPS-induced liver injury in mice through ER stress. Conclusion ·PE promotes macrophage senescence and the expression of SASP factors by activating ER stress signaling pathway, thereby aggravating LPS-induced liver injury.
[1] | LóPEZ-OTíN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. |
[2] | ZHANG L, PITCHER L E, YOUSEFZADEH M J, et al. Cellular senescence: a key therapeutic target in aging and diseases[J]. J Clin Invest, 2022, 132(15): e158450. |
[3] | GUO J, HUANG X Q, DOU L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments[J]. Signal Transduct Target Ther, 2022, 7(1): 391. |
[4] | SWEET M J, RAMNATH D, SINGHAL A, et al. Inducible antibacterial responses in macrophages[J]. Nat Rev Immunol, 2025, 25: 92-107. |
[5] | PEISELER M, DAVID B A, ZINDEL J, et al. Kupffer cell-like syncytia replenish resident macrophage function in the fibrotic liver[J]. Science, 2023, 381(6662): eabq5202. |
[6] | WANG L L, HONG W X, ZHU H, et al. Macrophage senescence in health and diseases[J]. Acta Pharm Sin B, 2024, 14(4): 1508-1524. |
[7] | LIU Z Q, LIANG Q M, REN Y Q, et al. Immunosenescence: molecular mechanisms and diseases[J]. Signal Transduct Target Ther, 2023, 8(1): 200. |
[8] | ZHAO B H, WU B, FENG N, et al. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications[J]. J Hematol Oncol, 2023, 16(1): 28. |
[9] | BIRCH J, GIL J. Senescence and the SASP: many therapeutic avenues[J]. Genes Dev, 2020, 34(23/24): 1565-1576. |
[10] | LEON K E, BUJ R, LESKO E, et al. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A[J]. J Cell Biol, 2021, 220(8): e202008101. |
[11] | WANG B S, HAN J, ELISSEEFF J H, et al. The senescence-associated secretory phenotype and its physiological and pathological implications[J]. Nat Rev Mol Cell Biol, 2024, 25(12): 958-978. |
[12] | ROH K, NOH J, KIM Y, et al. Lysosomal control of senescence and inflammation through cholesterol partitioning[J]. Nat Metab, 2023, 5(3): 398-413. |
[13] | YOSHIMOTO S, LOO T M, ATARASHI K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]. Nature, 2013, 499(7456): 97-101. |
[14] | LIU X, HARTMAN C L, LI L Y, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy[J]. Sci Transl Med, 2021, 13(587): eaaz6314. |
[15] | GIBELLINI F, SMITH T K. The Kennedy pathway: de novo synthesis of phosphatidylethanolamine and phosphatidylcholine[J]. IUBMB Life, 2010, 62(6): 414-428. |
[16] | PATEL D, WITT S N. Ethanolamine and phosphatidylethanolamine: partners in health and disease[J]. Oxid Med Cell Longev, 2017, 2017: 4829180. |
[17] | TACIAK B, BIA?ASEK M, BRANIEWSKA A, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages[J]. PLoS One, 2018, 13(6): e0198943. |
[18] | FACCHIN B M, DOS REIS G O, VIEIRA G N, et al. Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis[J]. Inflamm Res, 2022, 71(7/8): 741-758. |
[19] | YEN L, SVENDSEN J, LEE J S, et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage[J]. Nature, 2004, 431(7007): 471-476. |
[20] | EL MANAA W, DUPLAN E, GOIRAN T, et al. Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology[J]. Autophagy, 2021, 17(12): 4363-4385. |
[21] | ZHANG G Z, ZHAN M S, ZHANG C C, et al. Redox-responsive dendrimer nanogels enable ultrasound-enhanced chemoimmunotherapy of pancreatic cancer via endoplasmic reticulum stress amplification and macrophage polarization[J]. Adv Sci (Weinh), 2023, 10(24): e2301759. |
[22] | XUE L J, LIU K, YAN C X, et al. Schisandra lignans ameliorate nonalcoholic steatohepatitis by regulating aberrant metabolism of phosphatidylethanolamines[J]. Acta Pharm Sin B, 2023, 13(8): 3545-3560. |
[23] | TIGHANIMINE K, NABUCO LEVA FERREIRA FREITAS J A, NEMAZANYY I, et al. A homoeostatic switch causing glycerol-3-phosphate and phosphoethanolamine accumulation triggers senescence by rewiring lipid metabolism[J]. Nat Metab, 2024, 6(2): 323-342. |
[24] | ZHANG L Z, RICHARD A S, JACKSON C B, et al. Phosphatidylethanolamine and phosphatidylserine synergize to enhance GAS6/AXL-mediated virus infection and efferocytosis[J]. J Virol, 2020, 95(2): e02079-20. |
[25] | VAZQUEZ-DE-LARA L G, TLATELPA-ROMERO B, ROMERO Y, et al. Phosphatidylethanolamine induces an antifibrotic phenotype in normal human lung fibroblasts and ameliorates bleomycin-induced lung fibrosis in mice[J]. Int J Mol Sci, 2018, 19(9): 2758. |
[26] | HUANG F Z, LIU X M, LIU J J, et al. Phosphatidylethanolamine aggravates Angiotensin Ⅱ-induced atrial fibrosis by triggering ferroptosis in mice[J]. Front Pharmacol, 2023, 14: 1148410. |
[27] | LI L, CUI L, LIN P, et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers[J]. Cell Stem Cell, 2023, 30(3): 283-299.e9. |
[28] | FANG P P, XIANG L X, HUANG S S, et al. IRE1α-XBP1 signaling pathway regulates IL-6 expression and promotes progression of hepatocellular carcinoma[J]. Oncol Lett, 2018, 16(4): 4729-4736. |
[29] | RI M, TASHIRO E, OIKAWA D, et al. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing[J]. Blood Cancer J, 2012, 2(7): e79. |
[30] | SONG N, SONG Y Q, HU B B, et al. Persistent endoplasmic reticulum stress stimulated by peptide assemblies for sensitizing cancer chemotherapy[J]. Adv Healthcare Mater, 2023, 12(5): 2202039. |
[31] | YIN N, ZHANG W J, SUN X X, et al. Artificial cells delivering itaconic acid induce anti-inflammatory memory-like macrophages to reverse acute liver failure and prevent reinjury[J]. Cell Rep Med, 2023, 4(8): 101132. |
/
〈 |
|
〉 |