论著 · 基础研究

大黄素改善阿尔茨海默病认知障碍、内质网应激和神经炎症的研究

  • 杨乐 ,
  • 周怡 ,
  • 王钶韵 ,
  • 赖娅莉
展开
  • 1.成都医学院第二附属医院,核工业四一六医院神经内科,成都 610041
    2.四川省医学科学院·四川省人民医院神经内科,成都 610072
杨 乐(1988—),男,副主任医师,硕士;电子信箱:yulele594@163.com
第一联系人:杨乐、周怡参与实验设计,杨乐、周怡、王钶韵参与实验操作、数据采集及数据分析,杨乐、周怡、王钶韵、赖娅莉参与论文的写作和修改。所有作者均阅读并同意最终稿件的提交。
赖娅莉,副主任医师,硕士;电子信箱:838856089@qq.com

收稿日期: 2024-11-18

  录用日期: 2025-02-18

  网络出版日期: 2025-06-28

基金资助

2020年四川省卫生健康科研课题立项项目(20ZD009)

Research on the improvement of cognitive impairment, endoplasmic reticulum stress and neuroinflammation in Alzheimer's disease by emodin

  • YANG Le ,
  • ZHOU Yi ,
  • WANG Keyun ,
  • LAI Yali
Expand
  • 1.Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, 416 Nuclear Industry Hospital, Chengdu 610041, China
    2.Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
First author contact:YANG Le and ZHOU Yi participated in the experimental design. YANG Le, ZHOU Yi and WANG Keyun participated in experimental operations, data collection, and data analysis. YANG Le, ZHOU Yi, WANG Keyun and LAI Yali participated in the writing and editing of the paper. All authors have read and agreed to submit the final manuscript.
LAI Yali, E-mail: 838856089@qq.com.

Received date: 2024-11-18

  Accepted date: 2025-02-18

  Online published: 2025-06-28

Supported by

2020 Sichuan Province Health Research Project(20ZD009)

摘要

目的·探讨大黄素在阿尔茨海默病(Alzheimer's disease,AD)中的作用及其潜在机制。方法·将野生型C57BL/6J小鼠和3×Tg-AD小鼠分为6组:对照组(C57BL/6J小鼠)、AD组(3×Tg-AD小鼠)、大黄素25 mg/kg组(3×Tg-AD小鼠+大黄素25 mg/kg)、大黄素50 mg/kg组(3×Tg-AD小鼠+大黄素50 mg/kg)、大黄素100 mg/kg组(3×Tg-AD小鼠+大黄素100 mg/kg)和多奈哌齐组(3×Tg-AD小鼠+多奈哌齐3 mg/kg)。采用Morris水迷宫实验分析小鼠学习记忆能力,采用免疫组织化学法检测胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)、葡萄糖调节蛋白78(glucose-regulated protein 78kDa,GRP78)和肌醇需求酶1α(inositol-requiring enzyme 1α,IRE1α)的表达,采用酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)分析脑组织中肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白介素-1β(interleukin-1β,IL-1β)和IL-6的含量,采用Western blotting检测NF-κB p65、p-NF-κB p65、p38、p-p38的蛋白表达。结果·与对照组相比,AD组小鼠认知能力下降,GFAP表达升高,TNF-α、IL-1β、IL-6含量增多,GRP78和IRE1α表达升高,NF-κB p65、p38磷酸化表达升高。与AD组相比,大黄素改善AD小鼠的认知能力障碍,抑制星形胶质细胞过度激活和神经炎症,并降低脑组织GRP78、IRE1α、磷酸化NF-κB p65和磷酸化p38的表达。结论·大黄素能有效改善AD小鼠认知能力障碍,其机制可能与抑制星形胶质细胞内质网应激介导的神经炎症有关。

本文引用格式

杨乐 , 周怡 , 王钶韵 , 赖娅莉 . 大黄素改善阿尔茨海默病认知障碍、内质网应激和神经炎症的研究[J]. 上海交通大学学报(医学版), 2025 , 45(6) : 727 -734 . DOI: 10.3969/j.issn.1674-8115.2025.06.007

Abstract

Objective ·To explore the effects and potential mechanisms of emodin on Alzheimer's disease (AD). Methods ·Wild-type C57BL/6J mice and 3×Tg-AD mice were divided into 6 groups: Control group (C57BL/6J mice), AD group (3×Tg-AD mice), Emodin 25 mg/kg group (3×Tg-AD mice + Emodin 25 mg/kg), Emodin 50 mg/kg group (3×Tg-AD mice + Emodin 50 mg/kg), Emodin 100 mg/kg group (3×Tg-AD mice + Emodin 100 mg/kg) and Donepezil group (3×Tg-AD mice + Donepezil 3 mg/kg). The Morris water maze test was used to evaluate the learning and memory abilities of mice. The expression of glial fibrillary acidic protein (GFAP), glucose-regulated protein 78kDa (GRP78), and inositol-requiring enzyme 1α (IRE1α) was detected by immunohistochemistry. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in brain tissue were measured by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the expression of NF-κB p65, p-NF-κB p65, p38, and p-p38 proteins. Results ·Compared with the control group, mice in the AD group showed impaired cognition, increased GFAP expression, elevated levels of TNF-α, IL-1β and IL-6, and increased expression of GRP78 and IRE1α, along with enhanced phosphorylation of NF-κB p65 and p38. Compared with the AD group, emodin improved cognitive impairment of AD mice, inhibited astrocyte overactivation and neuroinflammation, and decreased the expression of GRP78, IRE1α, phosphorylated NF-κB p65, and phosphorylated p38 in brain tissue. Conclusion ·Emodin can effectively improve cognitive impairment in AD mice, which may be related to the inhibition of endoplasmic reticulum stress-mediated neuroinflammation in astrocytes.

参考文献

[1] JETT S, MALVIYA N, SCHELBAUM E, et al. Endogenous and exogenous estrogen exposures: how women's reproductive health can drive brain aging and inform Alzheimer's prevention[J]. Front Aging Neurosci, 2022, 14: 831807.
[2] ZHAO M, WANG Y C, SHEN Y X, et al. A review of the roles of pathogens in Alzheimer's disease[J]. Front Neurosci, 2024, 18: 1439055.
[3] AVILA J, PERRY G. A multilevel view of the development of Alzheimer's disease[J]. Neuroscience, 2021, 457: 283-293.
[4] SONG L, PIAO Z Y, YAO L F, et al. Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer's disease rats[J]. Exp Anim, 2020, 69(3): 363-373.
[5] LIU Y H, SHANG L R, ZHOU J B, et al. Emodin attenuates LPS-induced acute lung injury by inhibiting NLRP3 inflammasome-dependent pyroptosis signaling pathway in vitro and in vivo[J]. Inflammation, 2022, 45(2): 753-767.
[6] 陈芬,袁飞飞,李伟,等.大黄素调节AMPK/TXNIP/NLRP3信号通路对子痫前期大鼠炎症反应的影响[J]. 中国临床药理学杂志, 2024, 40(14): 2068-2072.
  CHEN F, YUAN F F, LI W, et al. Effects of emodin on inflammatory response in preeclampsia rats by regulating AMPK/TXNIP/NLRP3 signaling pathway[J]. Chinese Journal of Clinical Pharmacology, 2024, 40(14): 2068-2072.
[7] XING M, MA X Y, WANG X, et al. Emodin disrupts the Notch1/Nrf2/GPX4 antioxidant system and promotes renal cell ferroptosis[J]. J Appl Toxicol, 2023, 43(11): 1702-1718.
[8] ZHOU J B, LI G H, HAN G K, et al. Emodin induced necroptosis in the glioma cell line U251 via the TNF-α/RIP1/RIP3 pathway[J]. Invest New Drugs, 2020, 38(1): 50-59.
[9] 夏能银, 徐凌云, 王钰, 等. 大黄素抗小鼠阿尔茨海默病的作用及机制分析[J]. 武汉轻工大学学报, 2023, 42(6): 47-56.
  XIA N Y, XU L Y, WANG Y, et al. Study on the effects and mechanisms of emodin in the treatment of Alzheimer's disease in mice[J]. Journal of Wuhan Polytechnic University, 2023, 42(6): 47-56.
[10] CASAS-MARTINEZ J C, SAMALI A, MCDONAGH B. Redox regulation of UPR signalling and mitochondrial ER contact sites[J]. Cell Mol Life Sci, 2024, 81(1): 250.
[11] AJOOLABADY A, LINDHOLM D, REN J, et al. ER stress and UPR in Alzheimer's disease: mechanisms, pathogenesis, treatments[J]. Cell Death Dis, 2022, 13(8): 706.
[12] SOUGIANNIS A T, ENOS R T, VANDERVEEN B N, et al. Safety of natural anthraquinone emodin: an assessment in mice[J]. BMC Pharmacol Toxicol, 2021, 22(1): 9.
[13] DOROSZKIEWICZ J, MROCZKO B. New possibilities in the therapeutic approach to Alzheimer's disease[J]. Int J Mol Sci, 2022, 23(16): 8902.
[14] MA H Y, DONG Y, CHU Y H, et al. The mechanisms of ferroptosis and its role in Alzheimer's disease[J]. Front Mol Biosci, 2022, 9: 965064.
[15] GLASS C K, SAIJO K, WINNER B, et al. Mechanisms underlying inflammation in neurodegeneration[J]. Cell, 2010, 140(6): 918-934.
[16] NANCLARES C, BARAIBAR A M, ARAQUE A, et al. Dysregulation of astrocyte-neuronal communication in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(15): 7887.
[17] VERKHRATSKY A, NEDERGAARD M. Physiology of astroglia[J]. Physiol Rev, 2018, 98(1): 239-389.
[18] FAKHOURY M. Microglia and astrocytes in Alzheimer's disease: implications for therapy[J]. Curr Neuropharmacol, 2018, 16(5): 508-518.
[19] POTOKAR M, MORITA M, WICHE G, et al. The diversity of intermediate filaments in astrocytes[J]. Cells, 2020, 9(7): 1604.
[20] WANG B, LIU Y, JIANG R, et al. Emodin relieves the inflammation and pyroptosis of lipopolysaccharide-treated 1321N1 cells by regulating methyltransferase-like 3-mediated NLR family pyrin domain containing 3 expression[J]. Bioengineered, 2022, 13(3): 6740-6749.
[21] GHEMRAWI R, KHAIR M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(17): 6127.
[22] SCHEPER W, HOOZEMANS J J M. The unfolded protein response in neurodegenerative diseases: a neuropathological perspective[J]. Acta Neuropathol, 2015, 130(3): 315-331.
[23] RAHMAN S, ARCHANA A, JAN A T, et al. Dissecting endoplasmic reticulum unfolded protein response (UPRER) in managing clandestine modus operandi of Alzheimer's disease[J]. Front Aging Neurosci, 2018, 10: 30.
[24] GRAEWERT M A, VOLKOVA M, JONASSON K, et al. Structural basis of CDNF interaction with the UPR regulator GRP78[J]. Nat Commun, 2024, 15(1): 8175.
[25] WANG Y L, ZHOU X, LI D L, et al. Role of the mTOR-autophagy-ER stress pathway in high fructose-induced metabolic-associated fatty liver disease[J]. Acta Pharmacol Sin, 2022, 43(1): 10-14.
[26] LIU Y Y, XU C L, GU R J, et al. Endoplasmic reticulum stress in diseases[J]. Med Comm (2020), 2024, 5(9): e701.
文章导航

/