论著 · 基础研究

主动脉瘤单细胞转录组的系统性分析与探索

  • 张星语 ,
  • 李若谷
展开
  • 上海市胸科医院,上海交通大学医学院附属胸科医院心内科,上海 200030
张星语(1998—),男,博士生;电子信箱:xinggue@sjtu.edu.cn
第一联系人:张星语负责研究设计、数据获取与分析、论文写作,李若谷负责选题、论文审阅及修改。所有作者均阅读并同意了最终稿件的提交。
李若谷,主任医师,博士;电子信箱:13564565961@163.com

收稿日期: 2024-11-15

  录用日期: 2025-03-17

  网络出版日期: 2025-06-28

Systematic analysis and exploration of single-cell transcriptomes in aortic aneurysm

  • ZHANG Xingyu ,
  • LI Ruogu
Expand
  • Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
First author contact:ZHANG Xingyu was responsible for research design, data acquisition and analysis, and paper writing. LI Ruogu was responsible for research topic selection, paper review, and revision. Both authors have read the last version of paper and agreed to the submission of the final manuscript.
LI Ruogu, E-mail: 13564565961@163.com.

Received date: 2024-11-15

  Accepted date: 2025-03-17

  Online published: 2025-06-28

摘要

目的·利用单细胞RNA测序(single-cell RNA sequencing,scRNA-seq)技术探究主动脉瘤(aortic aneurysm,AA)的单细胞图景。方法·通过系统性检索高通量基因表达数据库(Gene Expression Omnibus,GEO),收集所有符合纳入标准的数据集。使用R语言和Seurat软件包分析AA组织与正常对照组织的细胞构成占比变化;使用CellChat软件包通过细胞受体-配体对的基因表达水平评估细胞间相互作用;使用AUCell软件包依据SenMayo Senescence基因集进行细胞衰老程度评分并进行对比;通过将单细胞转录数据模拟为普通转录组数据,对周细胞进行差异基因筛选及基因通路富集分析。结果·共纳入9组数据集,经质量控制及合并后获得104 570个细胞的RNA计数数据,其中对照组48 311个、AA组56 259个。细胞被划分为19个簇,被注释为14种细胞类型。与对照组相比,AA组的周细胞比例显著降低(P<0.001),而单核/巨噬细胞和树突状细胞的数量占比显著上升(P=0.020,P=0.045)。此外,AA组细胞相互作用多于对照组,但血管平滑肌细胞参与的相互作用减少,周细胞与自身相互作用的强度亦有所降低。对照组特有的细胞相互作用有5种,AA组特有的细胞相互作用有13种,其中相对信息流量最大的相互作用是SPP1。除脂肪细胞外,AA组其余细胞种类的衰老评分均显著升高(均P<0.001),衰老阳性细胞数量明显增加(P<0.001),其中成纤维细胞占比最大。周细胞差异表达基因分析结果显示,AA组相比对照组有185个基因表达上调、151个表达下调,上调幅度最大的基因为Spp1。趋化因子活动通路及CXC趋化因子受体结合通路等促炎作用通路显著富集。结论·AA组织中的细胞构成发生显著变化,细胞间相互作用增强,细胞衰老程度上升,Spp1是关键基因。

本文引用格式

张星语 , 李若谷 . 主动脉瘤单细胞转录组的系统性分析与探索[J]. 上海交通大学学报(医学版), 2025 , 45(6) : 735 -744 . DOI: 10.3969/j.issn.1674-8115.2025.06.008

Abstract

Objective ·To explore the single-cell landscape of aortic aneurysm (AA) utilizing single-cell RNA sequencing (scRNA-seq) technology. Methods ·A systematic search of the Gene Expression Omnibus (GEO) was conducted to collect all datasets meeting the inclusion criteria. Changes in the percentage of cellular composition of AA tissues versus normal control tissues were analyzed using R language and the Seurat package. Cell-cell interactions were assessed by gene expression levels of cellular receptor-ligand pairs using the CellChat package. Cellular senescence was scored and compared based on the SenMayo Senescence gene set using the AUCell package.Single-cell transcriptional data were simulated as traditional transcriptome data for differential gene screening and gene pathway enrichment analysis of pericytes. Results ·A total of nine datasets meeting the criteria were included. After quality control and merging, RNA count data for 104 570 cells were obtained, comprising 48 311 in the control group and 56 259 in the AA group. Cells were categorized into 19 clusters and annotated into 14 cell types. Compared with the control group, the proportion of pericytes in the AA group significantly decreased (P<0.001), while the proportions of monocytes/macrophages and dendritic cells increased (P=0.020, P=0.045). The number of intercellular interactions in the AA group was markedly higher than that in the control group; however, yet the interactions involving smooth muscle cells decreased, and the interaction intensity among pericytes diminished. There were 5 unique intercellular interactions in the control group and 13 unique interactions in the AA group, with the interaction involving SPP1 showing the highest relative information flow. Except for adipocytes, all cell types in the AA group exhibited significantly higher senescence scores (P<0.001), with an overall increase in the number of senescent cells (P<0.001), predominantly fibroblasts. Differential expression analysis of pericytes showed 185 upregulated genes and 151 downregulated genes in the AA group, with Spp1 exhibiting the highest upregulation. Pro-inflammatory pathways related to chemokine activity and CXC chemokine receptor binding were significantly enriched. Conclusion ·The cellular composition in AA tissues undergoes significant alterations, characterized by an increase in intercellular interactions and elevated levels of cellular senescence, with Spp1 identified as a key gene.

参考文献

[1] YANG H, DEROO E, ZHOU T, et al. Deciphering cell-cell communication in abdominal aortic aneurysm from single-cell RNA transcriptomic data[J]. Front Cardiovasc Med, 2022, 9: 831789.
[2] BONTEKOE J, LIU B. Single-cell RNA sequencing provides novel insights to pathologic pathways in abdominal aortic aneurysm[J]. Front Cardiovasc Med, 2023, 10: 1172080.
[3] WU H, XIE C, WANG R, et al. Comparative analysis of thoracic and abdominal aortic aneurysms across the segment and species at the single-cell level[J]. Front Pharmacol, 2022, 13: 1095757.
[4] MIRANDA A M A, JANBANDHU V, MAATZ H, et al. Single-cell transcriptomics for the assessment of cardiac disease[J]. Nat Rev Cardiol, 2023, 20(5): 289-308.
[5] CHOU E L, CHAFFIN M, SIMONSON B, et al. Aortic cellular diversity and quantitative genome-wide association study trait prioritization through single-nuclear RNA sequencing of the aneurysmal human aorta[J]. Arterioscler Thromb Vasc Biol, 2022, 42(11): 1355-1374.
[6] DAVIS F M, TSOI L C, MA F, et al. Single-cell transcriptomics reveals dynamic role of smooth muscle cells and enrichment of immune cell subsets in human abdominal aortic aneurysms[J]. Ann Surg, 2022, 276(3): 511-521.
[7] LI Y, REN P, DAWSON A, et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue[J]. Circulation, 2020, 142(14): 1374-1388.
[8] ZHAO G, LU H, CHANG Z, et al. Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta[J]. Cardiovasc Res, 2021, 117(5): 1402-1416.
[9] HAO Y, STUART T, KOWALSKI M H, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis[J]. Nat Biotechnol, 2024, 42(2): 293-304.
[10] HAFEMEISTER C, SATIJA R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression[J]. Genome Biol, 2019, 20(1): 296.
[11] CHOUDHARY S, SATIJA R. Comparison and evaluation of statistical error models for scRNA-seq[J]. Genome Biol, 2022, 23(1): 27.
[12] KORSUNSKY I, MILLARD N, FAN J, et al. Fast, sensitive and accurate integration of single-cell data with Harmony[J]. Nat Methods, 2019, 16(12): 1289-1296.
[13] ARAN D, LOONEY A P, LIU L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nat Immunol, 2019, 20(2): 163-172.
[14] HOU W, JI Z. Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis[J]. Nat Methods, 2024, 21(8): 1462-1465.
[15] QUAN F, LIANG X, CHENG M, et al. Annotation of cell types (ACT): a convenient web server for cell type annotation[J]. Genome Med, 2023, 15(1): 91.
[16] JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat[J]. Nat Commun, 2021, 12(1): 1088.
[17] JIN S, PLIKUS M V, NIE Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics[J]. Nat Protoc, 2025, 20(1): 180-219.
[18] AIBAR S, GONZáLEZ-BLAS C B, MOERMAN T, et al. SCENIC: single-cell regulatory network inference and clustering[J]. Nat Methods, 2017, 14(11): 1083-1086.
[19] SAUL D, KOSINSKY R L, ATKINSON E J, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues[J]. Nat Commun, 2022, 13(1): 4827.
[20] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550.
[21] YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
[22] XU S, HU E, CAI Y, et al. Using clusterProfiler to characterize multiomics data[J]. Nat Protoc, 2024, 19(11): 3292-3320.
[23] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene Ontology: tool for the unification of biology[J]. Nat Genet, 2000, 25(1): 25-29.
[24] PEDROZA A J, TASHIMA Y, SHAD R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2195-2211.
[25] MACKAY C D A, JADLI A S, FEDAK P W M, et al. Adventitial fibroblasts in aortic aneurysm: unraveling pathogenic contributions to vascular disease[J]. Diagnostics (Basel), 2022, 12(4): 871.
[26] MEEKEL J P, MATTEI G, COSTACHE V S, et al. A multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas[J]. Acta Biomater, 2019, 96: 345-353.
[27] WANG D, HAO X, JIA L, et al. Cellular senescence and abdominal aortic aneurysm: from pathogenesis to therapeutics[J]. Front Cardiovasc Med, 2022, 9: 999465.
[28] TAO W, HONG Y, HE H, et al. microRNA-199a-5p aggravates angiotensin II-induced vascular smooth muscle cell senescence by targeting Sirtuin-1 in abdominal aortic aneurysm[J]. J Cell Mol Med, 2021, 25(13): 6056-6069.
[29] XIE J, TANG Z, CHEN Q, et al. Clearance of stress-induced premature senescent cells alleviates the formation of abdominal aortic aneurysms[J]. Aging Dis, 2023, 14(5): 1778-1798.
[30] LU H, DU W, REN L, et al. Vascular smooth muscle cells in aortic aneurysm: from genetics to mechanisms[J]. J Am Heart Assoc, 2021, 10(24): e023601.
[31] TETI G, CHIARINI F, MAZZOTTI E, et al. Cellular senescence in vascular wall mesenchymal stromal cells, a possible contribution to the development of aortic aneurysm[J]. Mech Ageing Dev, 2021, 197: 111515.
[32] ASHIZAWA N, GRAF K, DO Y S, et al. Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction [J]. J Clin Invest, 1996, 98(10): 2218-2227.
[33] ROTEM I, KONFINO T, CALLER T, et al. Osteopontin promotes infarct repair[J]. Basic Res Cardiol, 2022, 117(1): 51.
[34] BRUEMMER D, COLLINS A R, NOH G, et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice[J]. J Clin Invest, 2003, 112(9): 1318-1331.
[35] WANG S K, GREEN L A, GUTWEIN A R, et al. Osteopontin may be a driver of abdominal aortic aneurysm formation[J]. J Vasc Surg, 2018, 68(6): 22S-29S.
文章导航

/