论著 · 技术与方法

基于纳米孔Cas9靶向测序的金黄色葡萄球菌快速检测与分型

  • 潘抒凡 ,
  • 杨栋磊 ,
  • 王鹏飞
展开
  • 1.上海交通大学医学院附属仁济医院,上海 200127
    2.上海交通大学医学院分子医学研究院,上海 200127
潘抒凡(2001—),女,博士生;电子信箱:shufan_alicepan@163.com
第一联系人:王鹏飞负责研究设计和项目管理,潘抒凡负责实验操作,杨栋磊和潘抒凡负责数据分析,王鹏飞、杨栋磊和潘抒凡参与论文撰写。所有作者均阅读并同意最终稿件的提交。
杨栋磊,副研究员,博士;电子信箱:dongleiyang@shsmu.edu.cn
王鹏飞,研究员,博士;电子信箱:pengfei.wang@sjtu.edu.cn

收稿日期: 2024-10-24

  录用日期: 2025-02-28

  网络出版日期: 2025-06-28

基金资助

上海地方高水平大学创新团队项目(SHSMU-ZLCX20212602)

Rapid detection and typing of Staphylococcus aureus based on nanopore Cas9-targeted sequencing

  • PAN Shufan ,
  • YANG Donglei ,
  • WANG Pengfei
Expand
  • 1.Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
    2.Institute of Molecular Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
First author contact:WANG Pengfei designed and supervised the project. PAN Shufan conducted the experiments. YANG Donglei and PAN Shufan analyzed the data. WANG Pengfei, YANG Donglei and PAN Shufan completed the manuscript. All authors have read the final version of paper and consented to submission.
YANG Donglei, E-mail: dongleiyang@shsmu.edu.cn
WANG Pengfei, E-mail: pengfei.wang@sjtu.edu.cn.

Received date: 2024-10-24

  Accepted date: 2025-02-28

  Online published: 2025-06-28

Supported by

Innovative Research Team of High-Level Local Universities in Shanghai(SHSMU-ZLCX20212602)

摘要

目的·利用纳米孔Cas9靶向测序(nanopore Cas9-targeted sequencing,nCATS)技术实现金黄色葡萄球菌的快速检测,并同时进行葡萄球菌蛋白A(staphylococcal protein A,spa)分型和葡萄球菌盒式染色体mec(staphylococcal cassette chromosome mec,SCCmec)分型。方法·以spa基因和SCCmec基因元件作为靶向测序的2个目标区域(region of interest,ROI),设计4种CRISPR RNA(crRNA),使其构成的Cas9核糖核蛋白(ribonucleoprotein,RNP)能够靶向切割2个ROI两侧的序列;针对每种crRNA设计42 bp的模拟靶标DNA。通过Cas9 RNP切割效率测试,筛选合适的crRNA,优化切割体系,选择切割反应时间和Cas9 RNP合成温度。提取耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)菌株基因组DNA,末端去磷酸化,在切割后的ROI两侧末端加上dA尾,与测序接头连接后利用纳米孔机器进行测序。对测序结果数据的质量值进行分析,并将测得的核酸序列分别与mecAspa和SCCmec数据库进行比对,根据比对结果判断样本中是否含有金黄色葡萄球菌,是否为MRSA,并同时获得其spa分型和SCCmec分型。结果·共设计出2组crRNA,经电泳图灰度分析,筛选出切割效率更高的一组用于后续实验。切割效率优化结果显示,Cas9 RNP与靶标DNA比例为1∶1,切割反应时间为15 min,Cas9 RNP合成温度为25 ℃时,Cas9 RNP切割效率可达87.41%。nCATS测序质量值集中在15(Q15)和20(Q20)之间,表明测序准确度约为99%。测序结果与mecAspa和SCCmec数据库比对后得出菌株样本的spa分型为t2,并且是SCCmec Ⅱ型。相同菌株样本经PCR扩增后测序和多重PCR验证,结果均与nCATS结果一致。结论·利用nCATS技术能够实现金黄色葡萄球菌的快速检测,并能同时获得spa分型和SCCmec分型。

本文引用格式

潘抒凡 , 杨栋磊 , 王鹏飞 . 基于纳米孔Cas9靶向测序的金黄色葡萄球菌快速检测与分型[J]. 上海交通大学学报(医学版), 2025 , 45(6) : 774 -783 . DOI: 10.3969/j.issn.1674-8115.2025.06.013

Abstract

Objective ·To achieve the rapid detection of Staphylococcus aureus using nanopore Cas9-targeted sequencing (nCATS) technology, and simultaneously perform staphylococcal protein A (spa) typing and staphylococcal cassette chromosome mec (SCCmec) typing. Methods ·The spa gene and SCCmec gene elements were selected as two regions of interest (ROIs) for targeted sequencing. Four types of CRISPR RNAs (crRNAs) were designed to form Cas9 ribonucleoproteins (RNPs) to cleave sequences flanking the two ROIs. For each crRNA, a 42 bp synthetic target DNA was designed. Appropriate crRNAs were screened, the cleavage system was optimized, and both the cleavage reaction time and Cas9 RNP synthesis temperature were determined based on the results of Cas9 RNP cleavage efficiency testing. Genomic DNA was extracted from a methicillin-resistant Staphylococcus aureus (MRSA) strain, and the ends flanking the cleaved ROIs were dephosphorylated and dA-tailed. Sequencing adapters were ligated, and sequencing was performed using a nanopore platform. The quality scores of the sequencing data were analyzed, and the obtained nucleic acid sequences were compared with those in the mecA, spa and SCCmec databases. Based on the comparison results, the presence of Staphylococcus aureus, MRSA or not, and spa and SCCmec types were determined. Results ·Two sets of crRNAs were designed. Based on grayscale analysis of electrophoresis results, the set with higher cleavage efficiency was selected for further experiments. Optimization showed that a 1∶1 ratio of Cas9 RNP to target DNA, a 15 min cleavage reaction time, and a Cas9 RNP synthesis temperature of 25 ℃ yielded a cleavage efficiency of 87.41%. nCATS sequencing quality scores ranged between 15 (Q15) and 20 (Q20), indicating an approximate sequencing accuracy of 99%. Sequence comparisons with the mecA, spa and SCCmec databases revealed that the strain's spa type was t2 and its SCCmec type was Ⅱ. These results were consistent with those obtained by PCR amplification sequencing and multiplex PCR. Conclusion ·The nCATS technique enables rapid detection of Staphylococcus aureus, while simultaneously providing spa and SCCmec typing information.

参考文献

[1] PALAVECINO E L. Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections[J]. Methods Mol Biol, 2020, 2069: 1-28.
[2] 郭燕, 胡付品, 朱德妹, 等. 2022年CHINET三级医院细菌耐药监测[J]. 中国感染与化疗杂志, 2024, 24(3): 277-286.
  GUO Y, HU F P, ZHU D M, et al. Surveillance of bacterial resistance in tertiary hospitals across China: results of CHINET Antimicrobial Resistance Surveillance Program in 2022[J]. Chinese Journal of Infection and Chemotherapy, 2024, 24(3): 277-286.
[3] 邱杰, 苏明宽, 吴海英. 葡萄球菌A蛋白快速检测金黄色葡萄球菌的临床监测与研究[J]. 临床合理用药杂志, 2018, 11(11): 100-101.
  QIU J, SU M K, WU H Y. Clinical monitoring and research on the rapid detection of Staphylococcus aureus by staphylococcal protein A[J]. Chinese Journal of Clinical Rational Drug Use, 2018, 11(11): 100-101.
[4] RIGI G, GHAEDMOHAMMADI S, AHMADIAN G. A comprehensive review on staphylococcal protein A (SpA): its production and applications[J]. Biotechnol Appl Biochem, 2019, 66(3): 454-464.
[5] 邹自英, 韩黎, 熊杰, 等. 金黄色葡萄球菌临床分离株spa分型和耐药特征研究[J]. 中国感染与化疗杂志, 2014, 14(2): 142-145.
  ZOU Z Y, HAN L, XIONG J, et al. spa Typing and resistance profile of Staphylococcus aureus isolated from clinical specimens[J]. Chinese Journal of Infection and Chemotherapy, 2014, 14(2): 142-145.
[6] HALLIN M, FRIEDRICH A W, STRUELENS M J. spa Typing for epidemiological surveillance of Staphylococcus aureus[J]. Methods Mol Biol, 2009, 551: 189-202.
[7] GUO Y L, SONG G H, SUN M L, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus[J]. Front Cell Infect Microbiol, 2020, 10: 107.
[8] GIULIERI S G, TONG S Y C, WILLIAMSON D A. Using genomics to understand meticillin- and vancomycin-resistant Staphylococcus aureus infections[J]. Microb Genom, 2020, 6(1): e000324.
[9] LAM J C, STOKES W. The golden grapes of wrath-Staphylococcus aureus bacteremia: a clinical review[J]. Am J Med, 2023, 136(1): 19-26.
[10] LAKHUNDI S, ZHANG K Y. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology[J]. Clin Microbiol Rev, 2018, 31(4): e00020-18.
[11] 武杰, 赵建平. 耐甲氧西林金黄色葡萄球菌分型方法研究进展[J]. 中国感染与化疗杂志, 2021, 21(2): 235-240.
  WU J, ZHAO J P. Advances in typing methods of methicillin-resistant Staphylococcus aureus[J]. Chinese Journal of Infection and Chemotherapy, 2021, 21(2): 235-240.
[12] CHARALAMPOUS T, KAY G L, RICHARDSON H, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection[J]. Nat Biotechnol, 2019, 37(7): 783-792.
[13] WANG M, FU A S, HU B, et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses[J]. Small, 2020, 16(32): e2002169.
[14] SLIZOVSKIY I B, OLIVA M, SETTLE J K, et al. Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes[J]. Microbiome, 2022, 10(1): 185.
[15] QUAN J, LANGELIER C, KUCHTA A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences[J]. Nucleic Acids Res, 2019, 47(14): e83.
[16] SERPA P H, DENG X D, ABDELGHANY M, et al. Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections[J]. Genome Med, 2022, 14(1): 74.
[17] WANG S W, GAO C, ZHENG Y M, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer[J]. Mol Cancer, 2022, 21(1): 57.
[18] WANG Y H, ZHAO Y, BOLLAS A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nat Biotechnol, 2021, 39(11): 1348-1365.
[19] 杨影, 谢水莲, 万绍贵, 等. 基于Cas9靶向富集的纳米孔高通量基因测序技术的应用进展[J]. 赣南医学院学报, 2022, 42(4): 342-347.
  YANG Y, XIE S L, WAN S G, et al. The applications of high-throughput nanopore based Cas9-targeted sequencing [J]. Journal of Gannan Medical University, 2022, 42(4): 342-347.
[20] GILPATRICK T, LEE I, GRAHAM J E, et al. Targeted nanopore sequencing with Cas9-guided adapter ligation[J]. Nat Biotechnol, 2020, 38(4): 433-438.
[21] BARTELS M D, PETERSEN A, WORNING P, et al. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus[J]. J Clin Microbiol, 2014, 52(12): 4305-4308.
[22] YAMAGUCHI T, ONO D, SATO A. Staphylococcal cassette chromosome mec (SCCmec) analysis of MRSA[J]. Methods Mol Biol, 2020, 2069: 59-78.
[23] 窦宇红, 梁鸿, 何玥, 等. qPCR快速检测金黄色葡萄球菌及MRSA方法的建立及评价[J]. 中国感染控制杂志, 2018, 17(9): 764-769.
  DOU Y H, LIANG H, HE Y, et al. Establishment and evaluation of a quantitative real-time PCR assay for rapid detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus[J]. Chinese Journal of Infection Control, 2018, 17(9): 764-769.
[24] CHIBA M, AOYAGI T, YOSHIDA M, et al. Evaluation of the performance of GeneSoC?, a novel rapid real-time PCR system, to detect Staphylococcus aureus and methicillin resistance in blood cultures[J]. J Infect Chemother, 2023, 29(7): 718-721.
[25] BILGRAU A E, FALGREEN S, PETERSEN A, et al. Unaccounted uncertainty from qPCR efficiency estimates entails uncontrolled false positive rates[J]. BMC Bioinformatics, 2016, 17: 159.
文章导航

/