论著 · 基础研究

颌骨成骨细胞调控B细胞分化的效应研究

  • 王歆雨 ,
  • 陈芊烨 ,
  • 孙计萍 ,
  • 鲁婷玮 ,
  • 黄湘如 ,
  • 孙思远 ,
  • 刘媛琪 ,
  • 潘厚文 ,
  • 代庆刚 ,
  • 沈蕾 ,
  • 江凌勇
展开
  • 1.上海交通大学医学院附属第九人民医院口腔颅颌面科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 200011
    2.上海交通大学医学院附属第九人民医院口腔颌面-头颈肿瘤科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 200011
    3.上海交通大学基础医学院免疫学与微生物学系,上海市免疫学研究所,上海 200025
    4.上海交通大学医学院附属第九人民医院口腔第二门诊部,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 200011
江凌勇,主任医师,博士;电子信箱:jianglingyong@sjtu.edu.cn

收稿日期: 2025-02-19

  录用日期: 2025-04-29

  网络出版日期: 2025-09-30

基金资助

上海交通大学医学院“双百人”项目(20221809);国家自然科学基金(82430032);国家自然科学基金(81870740);国家自然科学基金(82071083);国家自然科学基金(82271006);国家重点研发计划(2024YFC2510700);上海市科技创新行动计划国际科技合作项目/政府间国际科技合作项目(23410713600);上海市自然科学基金(21ZR1436900);上海市自然科学基金(22ZR1436700);上海交通大学医学院附属第九人民医院交叉研究基金(JYJC202116);上海交通大学医学院生物材料与再生医学交叉研究项目(2022LHB02)

Effect of jaw osteoblasts on B cell development via cytokine secretion

  • WANG Xinyu ,
  • CHEN Qianye ,
  • SUN Jiping ,
  • LU Tingwei ,
  • HUANG Xiangru ,
  • SUN Siyuan ,
  • LIU Yuanqi ,
  • PAN Houwen ,
  • DAI Qinggang ,
  • SHEN Lei ,
  • JIANG Lingyong
Expand
  • 1.Department of Oral and Maxillofacial Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
    2.Department of Oral Maxillofacio-Head and Neck Oncology, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
    3.Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Basic Medical Sciences; Shanghai Institute of Immunology, Shanghai 200025, China
    4.Department of 2nd Dental Centre, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
JANG Lingyong, E-mail: jianglingyong@sjtu.edu.cn.

Received date: 2025-02-19

  Accepted date: 2025-04-29

  Online published: 2025-09-30

Supported by

“Two-Hundred Talents” Program of Shanghai Jiao Tong University School of Medicine(20221809);National Natural Science Foundation of China(82430032);National Key Research and Development Program of China(2024YFC2510700);Shanghai Science and Technology Innovation Action Plan International Science and Technology Cooperation Program(23410713600);Natural Science Foundation of Shanghai(21ZR1436900);Cross-Disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine(JYJC202116);Biomaterials and Regenerative Medicine Institute Cooperative Research Project, Shanghai Jiao Tong University School of Medicine(2022LHB02)

摘要

目的·探究小鼠颌骨成骨细胞对B细胞分化发育的调控效应及具体作用机制。方法·采用优化的酶消化法制备小鼠颌骨单细胞悬液,体外诱导分化为成骨细胞。通过实时荧光定量聚合酶链反应(RT-qPCR)、碱性磷酸酶(ALP)染色及茜素红S(ARS)染色验证成骨细胞的成骨潜能。通过免疫荧光染色观察小鼠颌骨组织中成骨细胞与B细胞的空间定位关系。采用流式细胞分选技术获得高纯度、高活性的造血谱系前体细胞。通过建立基于Transwell小室的共培养体系,探究不同浓度颌骨成骨细胞(5×104、2.5×105、5×105个/孔)对B细胞分化(5×104个/孔)发育的调节作用。通过流式细胞术及RT-qPCR检测不同浓度成骨细胞诱导下B细胞的活性与分化程度。利用RT-qPCR检测成骨细胞成骨分化过程中与B细胞发育相关的外分泌因子的表达情况。结果·成骨诱导后,ALP与ARS染色结果显示小鼠颌骨成骨细胞具有优越的成骨潜能。RT-qPCR结果显示成骨细胞内高表达成骨基因Runx2OsxOcnAlp。组织免疫荧光检测结果显示,小鼠颌骨组织内成骨细胞与B细胞在空间定位上紧密相邻。在体外共培养模型中,流式细胞分析结果显示,成骨细胞以浓度依赖性的方式促进B细胞分化与发育。RT-qPCR与细胞免疫荧光检测结果显示,成骨细胞上调B细胞发育关键基因Ebf1Rag1Il7rPax5(均P<0.001)。RT-qPCR结果显示,与B细胞发育密切相关的细胞因子Il7BaffFlt3l在成骨细胞成骨分化的过程中显著上调(均P<0.05)。结论·颌骨成骨细胞以浓度依赖性的方式促进B细胞分化与发育,成骨细胞可能通过分泌生长因子上调B细胞内分化关键基因的表达。

本文引用格式

王歆雨 , 陈芊烨 , 孙计萍 , 鲁婷玮 , 黄湘如 , 孙思远 , 刘媛琪 , 潘厚文 , 代庆刚 , 沈蕾 , 江凌勇 . 颌骨成骨细胞调控B细胞分化的效应研究[J]. 上海交通大学学报(医学版), 2025 , 45(9) : 1106 -1115 . DOI: 10.3969/j.issn.1674-8115.2025.09.003

Abstract

Objective ·To investigate the regulatory effects and underlying mechanisms of mouse mandibular osteoblasts on B cell differentiation and development. Methods ·Single-cell suspensions from mouse mandibular bone were prepared using an optimized enzymatic digestion method and induced to differentiate into osteoblasts in vitro. Osteogenic potential was validated by real-time quantitative PCR (RT-qPCR), alkaline phosphatase (ALP) staining, and alizarin red S (ARS) staining. The spatial localization relationship between osteoblasts and B cells in mandibular tissues was examined via immunofluorescence staining. High-purity hematopoietic progenitor cells were isolated using fluorescence-activated cell sorting. A Transwell co-culture system was established to assess the regulatory effects of different osteoblast concentrations (5×104, 2.5×105, and 5×105 cells/well) on B cell differentiation (5×104 cells/well). Flow cytometry and RT-qPCR were employed to evaluate B cell viability and differentiation. Additionally, RT-qPCR was used to analyze the expression of osteoblast-secreted factors associated with B cell development during osteogenic differentiation. Results ·Mandibular osteoblasts exhibited robust osteogenic potential, as confirmed by ALP/ARS staining and high expression of osteogenic markers (Runx2, Osx, Ocn, and Alp) via RT-qPCR. Immunofluorescence revealed close spatial proximity between osteoblasts and B cells in mandibular tissues. In the co-culture system, osteoblasts promoted B cell differentiation in a concentration-dependent manner. RT-qPCR and immunofluorescence demonstrated that osteoblasts significantly upregulated key genes involved in B cell development (Ebf1, Rag1, Il7r, and Pax5; all P<0.001). Furthermore, osteoblast-derived factors (Il7, Baff, and Flt3l) were markedly elevated during osteogenic differentiation (all P<0.05). Conclusion ·Mandibular osteoblasts enhance B cell differentiation and development in a concentration-dependent manner, likely through secreting growth factors that upregulate critical B cell differentiation genes.

参考文献

[1] XU H, LI Y, GAO Y. The role of immune cells settled in the bone marrow on adult hematopoietic stem cells[J]. Cell Mol Life Sci, 2024, 81(1): 420.
[2] DE HAAN G,LAZARE S S. Aging of hematopoietic stem cells[J]. Blood, 2018, 131(5): 479-487.
[3] ROSS J B, MYERS L M, NOH J J, et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity[J]. Nature, 2024, 628(8006): 162-170.
[4] NAKAMURA-ISHIZU A, ITO K, SUDA T. Hematopoietic stem cell metabolism during development and aging[J]. Dev Cell, 2020, 54(2): 239-255.
[5] KOH B I, MOHANAKRISHNAN V, JEONG H W, et al. Adult skull bone marrow is an expanding and resilient haematopoietic reservoir[J]. Nature, 2024, 636(8041): 172-181.
[6] AGHALOO T L, CHAICHANASAKUL T, BEZOUGLAIA O, et al. Osteogenic potential of mandibular vs. long-bone marrow stromal cells[J]. J Dent Res, 2010, 89(11): 1293-1298.
[7] SELLERI L, RIJLI F M. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis[J]. Nat Rev Genet, 2023, 24(9): 610-626.
[8] YANG Y L, DAI Q G, GAO X, et al. Occlusal force orchestrates alveolar bone homeostasis via Piezo1 in female mice[J]. J Bone Miner Res, 2024, 39(5): 580-594.
[9] SVANDOVA E, PETERKOVA R, MATALOVA E, et al. Formation and developmental specification of the odontogenic and osteogenic mesenchymes[J]. Front Cell Dev Biol, 2020, 8: 640.
[10] LAM N, LEE Y, FARBER D L. A guide to adaptive immune memory[J]. Nat Rev Immunol, 2024, 24(11): 810-829.
[11] ZHONG X, MORESCO J J, KELLER K, et al. Essential requirement for IER3IP1 in B cell development[J]. Proc Natl Acad Sci USA, 2023, 120(46): e2312810120.
[12] DOORES K J. Humoral immunity to phlebovirus infection[J]. Ann N Y Acad Sci, 2023, 1530(1): 23-31.
[13] KLOC M, HALASA M, KUBIAK J Z, et al. Invertebrate immunity, natural transplantation immunity, somatic and germ cell parasitism, and transposon defense[J]. Int J Mol Sci, 2024, 25(2): 1072.
[14] CEKICI A, KANTARCI A, HASTURK H, et al. Inflammatory and immune pathways in the pathogenesis of periodontal disease[J]. Periodontol 2000, 2014, 64(1): 57-80.
[15] ZOU J, ZENG Z J, XIE W, et al. Immunotherapy with regulatory T and B cells in periodontitis[J]. Int Immunopharmacol, 2022, 109: 108797.
[16] ZHANG M, LIU Y, AFZALI H, et al. An update on periodontal inflammation and bone loss[J]. Front Immunol, 2024, 15: 1385436.
[17] SHI T, JIN Y, MIAO Y B, et al. IL-10 secreting B cells regulate periodontal immune response during periodontitis[J]. Odontology, 2020, 108(3): 350-357.
[18] LIU Z, LUO X, XU R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair[J]. Front Cell Dev Biol, 2024, 12: 1359295.
[19] NEURATH N, KESTING M. Cytokines in gingivitis and periodontitis: from pathogenesis to therapeutic targets[J]. Front Immunol, 2024, 15: 1435054.
[20] PAJARINEN J, LIN T, GIBON E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019, 196: 80-89.
[21] GARG V, GIRADDI G B, ROY S. Comparison of efficacy of mandible and iliac bone as autogenous bone graft for orbital floor reconstruction[J]. J Maxillofac Oral Surg, 2015, 14(2): 291-298.
[22] MERTENS C, DECKER C, SEEBERGER R, et al. Early bone resorption after vertical bone augmentation: a comparison of calvarial and iliac grafts[J]. Clin Oral Implants Res, 2013, 24(7): 820-825.
[23] SCHLUNDT C, FISCHER H, BUCHER C H, et al. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time[J]. Acta Biomater, 2021, 133: 46-57.
[24] LUO W, DU C Y, HUANG H, et al. The role of macrophage death in periodontitis: a review[J]. Inflammation, 2024, 47(6): 1889-1901.
[25] RASTOGI I, JEON D, MOSEMAN J E, et al. Role of B cells as antigen presenting cells[J]. Front Immunol, 2022, 13: 954936.
[26] MAURI C. Regulation of immunity and autoimmunity by B cells[J]. Curr Opin Immunol, 2010, 22(6): 761-767.
[27] ZHANG H, WANG R, WANG G, et al. Single-cell RNA sequencing reveals B cells are important regulators in fracture healing[J]. Front Endocrinol (Lausanne), 2021, 12: 666140.
[28] FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123: 14-21.
[29] LIU L, CHEN Y, WANG L, et al. Dissecting B/plasma cells in periodontitis at single-cell/bulk resolution[J]. J Dent Res, 2022, 101(11): 1388-1397.
[30] ZHOU M, GRAVES D T. Impact of the host response and osteoblast lineage cells on periodontal disease[J]. Front Immunol, 2022, 13: 998244.
[31] PIETSCHMANN P, BUTYLINA M, KERSCHAN-SCHINDL K, et al. Mechanisms of systemic osteoporosis in rheumatoid arthritis[J]. Int J Mol Sci, 2022, 23(15): 8740.
[32] ZHOU R, GUO Q, XIAO Y, et al. Endocrine role of bone in the regulation of energy metabolism[J]. Bone Res, 2021, 9(1): 25.
[33] WU M, WU S, CHEN W, et al. The roles and regulatory mechanisms of TGF?β and BMP signaling in bone and cartilage development, homeostasis and disease[J]. Cell Res, 2024, 34(2): 101-123.
[34] LI L, LIU Y J, QIAN X S, et al. Modulating the phenotype and function of bone marrow-derived macrophages via mandible and femur osteoblasts[J]. Int Immunopharmacol, 2024, 132: 112000.
[35] XIONG Y, MI B B, LIN Z, et al. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity[J]. Mil Med Res, 2022, 9(1): 65.
[36] CAI B, LIN D, LI Y, et al. N2-polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: a missing piece of the bone regeneration puzzle[J]. Adv Sci (Weinh), 2021, 8(19): e2100584.
[37] YAMASHIRO K, IDEGUCHI H, AOYAGI H, et al. High mobility group box 1 expression in oral inflammation and regeneration[J]. Front Immunol, 2020, 11: 1461.
[38] WINTER J, JEPSEN S. Role of innate host defense proteins in oral cancerogenesis[J]. Periodontol 2000, 2024, 96(1): 203-220.
文章导航

/