JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (3): 391-395.doi: 10.3969/j.issn.1674-8115.2021.03.019
• Review • Previous Articles Next Articles
Received:
2019-12-23
Online:
2021-03-28
Published:
2021-04-06
Contact:
Dong-ying ZHANG
E-mail:2445176549@qq.com;zdy202284@126.com
CLC Number:
Min SUN, Dong-ying ZHANG. Progress of cardioprotection effect of sodium-glucose cotransporter 2 inhibitor on patients with type 2 diabetes[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 391-395.
1 | 申珂, 郭娜娜, 邓健,等. 中国近 40 年慢性病疾病谱变化情况[J]. 山西医药杂志, 2017, 46(8): 903-905. |
2 | Galbete A, Cambra K, Forga L, et al. Achievement of cardiovascular risk factor targets according to sex and previous history of cardiovascular disease in type 2 diabetes: a population-based study[J]. J Diabetes Complicat, 2019, 33(12): 107445. |
3 | Association AD. Standards of medical care in diabetes: 2020 abridged for primary care providers[J]. Clin Diabetes, 2020, 38(1): 10-38. |
4 | Zhu JH, Yu XX, Zheng YY, et al. Association of glucose-lowering medications with cardiovascular outcomes: an umbrella review and evidence map[J]. Lancet Diabetes Endocrinol, 2020, 8(3): 192-205. |
5 | Douros A, Dell'Aniello S, Yu OHY, et al. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: population based cohort study[J]. BMJ, 2018, 362: k2693. |
6 | Turner RC, Holman RR, Cull CA, et al. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J]. Lancet, 1998, 352(9131): 837-853. |
7 | Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes[J]. N Engl J Med, 2008, 358(24): 2545-2559. |
8 | Schnell O, Standl E, Catrinoiu D, et al. Report from the 1st cardiovascular outcome trial (CVOT) summit of the diabetes & cardiovascular disease (D&CVD) EASD study group[J]. Cardiovasc Diabetol, 2016, 15: 33. |
9 | Basile J. A new approach to glucose control in type 2 diabetes: the role of kidney sodium-glucose co-transporter 2 inhibition[J]. Postgrad Med, 2011, 123(4): 38-45. |
10 | Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects[J]. Nat Rev Endocrinol, 2012, 8(8): 495-502. |
11 | Han SP, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats[J]. Diabetes, 2008, 57(6): 1723-1729. |
12 | Pancholia AK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus[J]. Indian Heart J, 2018, 70(6): 915-921. |
13 | Powell J, Miller SA, Taylor JR. Sodium-glucose cotransporter 2 inhibitors: the new option for diabetes mellitus management[J]. South Med J, 2015, 108(2): 82-90. |
14 | Allegretti AS, Zhang WB, Zhou WJ, et al. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD[J]. Am J Kidney Dis, 2019, 74(3): 328-337. |
15 | Ku EJ, Lee DH, Jeon HJ, et al. Empagliflozin versus dapagliflozin in patients with type 2 diabetes inadequately controlled with metformin, glimepiride and dipeptidyl peptide 4 inhibitors: a 52-week prospective observational study[J]. Diabetes Res Clin Pract, 2019, 151: 65-73. |
16 | 高武通. 钠葡萄糖同向转运蛋白2抑制剂治疗2型糖尿病的研究新进展[J]. 浙江医学, 2018, 40(16): 1882-1885. |
17 | Matthews D, Fulcher G, Perkovic V, et al. Efficacy and safety of Canagliflozin (CANA), an inhibitor of Sodium Glucose Co-Transporter 2 (SGLT2), added on to insulin therapy with or without oral agents in type 2 diabetes (T2D)[J]. Diabetol Und Stoffwechsel, 2013, 8(S01). DOI: 10.1055/s-0033-1341911. |
18 | Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes[J]. N Engl J Med, 2015, 373(22): 2117-2128. |
19 | Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors)[J]. Circulation, 2017, 136(3): 249-259. |
20 | Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7): 644-657. |
21 | Patorno E, Goldfine AB, Schneeweiss S, et al. Cardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: population based cohort study[J]. BMJ, 2018, 360: k119. |
22 | Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study[J]. J Am Coll Cardiol, 2018, 71(23): 2628-2639. |
23 | Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380(4): 347-357. |
24 | McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2019, 381(21): 1995-2008. |
25 | Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet, 2019, 393(10166): 31-39. |
26 | Ghezzi C, Yu AS, Hirayama BA, et al. Dapagliflozin binds specifically to sodium-glucose cotransporter 2 in the proximal renal tubule[J]. J Am Soc Nephrol, 2017, 28(3): 802-810. |
27 | Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure[J]. JAMA Cardiol, 2017, 2(9): 939-940. |
28 | Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis[J]. Diabetes Obes Metab, 2018, 20(3): 479-487. |
29 | Li CG, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart[J]. Cardiovasc Diabetol, 2019, 18(1): 15. |
30 | Fedak PW, Verma S, Weisel RD, et al. Cardiac remodeling and failure From molecules to man (Part II) [J]. Cardiovasc Pathol, 2005, 14(2): 49-60. |
31 | Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts[J]. Free Radic Biol Med, 2017, 104: 298-310. |
32 | Mizuno Y, Harada E, Nakagawa H, et al. The diabetic heart utilizes ketone bodies as an energy source[J]. Metab Clin Exp, 2017, 77: 65-72. |
33 | Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review[J]. Diabetologia, 2018, 61(10): 2108-2117. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 744
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||