JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (9): 1240-1245.doi: 10.3969/j.issn.1674-8115.2021.09.016
• Review • Previous Articles
Yi-yang SHU(), Si-qi ZHANG, Hai-yun LIU()
Received:
2020-11-24
Online:
2021-08-24
Published:
2021-08-24
Contact:
Hai-yun LIU
E-mail:shuyiyang@sjtu.edu.cn;drliuhaiyun@126.com
Supported by:
CLC Number:
Yi-yang SHU, Si-qi ZHANG, Hai-yun LIU. Research progress of imaging markers for identifying and predicting the progression of age-related macular degeneration[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1240-1245.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.09.016
1 | Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2(2): e106-e116. |
2 | Flaxel CJ, Adelman RA, Bailey ST, et al. Age-related macular degeneration preferred practice pattern®[J]. Ophthalmology, 2020, 127(1): P1-P65. |
3 | Murray IJ, Makridaki M, van der Veen RL, et al. Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 1781-1788. |
4 | 王诗惠, 戴乐舒, 宋剑涛. 年龄相关性黄斑变性玻璃膜疣的研究概况[J]. 国际眼科纵览, 2018, 42(3): 145-148. |
5 | Abdelfattah NS, Zhang HY, Boyer DS, et al. Drusen volume as a predictor of disease progression in patients with late age-related macular degeneration in the fellow eye[J]. Invest Ophthalmol Vis Sci, 2016, 57(4): 1839-1846. |
6 | Folgar FA, Yuan EL, Sevilla MB, et al. Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration[J]. Ophthalmology, 2016, 123(1): 39-50.e1. |
7 | de Sisternes L, Simon N, Tibshirani R, et al. Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7093-7103. |
8 | Schlanitz FG, Baumann B, Kundi M, et al. Drusen volume development over time and its relevance to the course of age-related macular degeneration[J]. Br J Ophthalmol, 2017, 101(2): 198-203. |
9 | Bogunovic H, Montuoro A, Baratsits M, et al. Machine learning of the progression of intermediate age-related macular degeneration based on OCT imaging[J]. Invest Ophthalmol Vis Sci, 2017, 58(6): BIO141-BIO150. |
10 | Veerappan M, El-Hage-Sleiman AM, Tai V, et al. Optical coherence tomography reflective drusen substructures predict progression to geographic atrophy in age-related macular degeneration[J]. Ophthalmology, 2016, 123(12): 2554-2570. |
11 | Ouyang Y, Heussen FM, Hariri A, et al. Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration[J]. Ophthalmology, 2013, 120(12): 2656-2665. |
12 | Lei JQ, Balasubramanian S, Abdelfattah NS, et al. Proposal of a simple optical coherence tomography-based scoring system for progression of age-related macular degeneration[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(8): 1551-1558. |
13 | Christenbury JG, Folgar FA, O′Connell RV, et al. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci[J]. Ophthalmology, 2013, 120(5): 1038-1045. |
14 | Sleiman K, Veerappan M, Winter KP, et al. Optical coherence tomography predictors of risk for progression to non-neovascular atrophic age-related macular degeneration[J]. Ophthalmology, 2017, 124(12): 1764-1777. |
15 | Nassisi M, Fan WY, Shi Y, et al. Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3431-3439. |
16 | Schmidt-Erfurth U, Waldstein SM, Klimscha S, et al. Prediction of individual disease conversion in early AMD using artificial intelligence[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3199-3208. |
17 | Fragiotta S, Rossi T, Cutini A, et al. Predictive factors for development of neovascular age-related macular degeneration: a spectral-domain optical coherence tomography study[J]. Retina, 2018, 38(2): 245-252. |
18 | Arnold JJ, Sarks SH, Killingsworth MC, et al. Reticular pseudodrusen. A risk factor in age-related maculopathy[J]. Retina, 1995, 15(3): 183-191. |
19 | Zweifel SA, Imamura Y, Spaide TC, et al. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration[J]. Ophthalmology, 2010, 117(9): 1775-1781. |
20 | Finger RP, Wu Z, Luu CD, et al. Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization[J]. Ophthalmology, 2014, 121(6): 1252-1256. |
21 | Finger RP, Chong E, McGuinness MB, et al. Reticular pseudodrusen and their association with age-related macular degeneration: the Melbourne collaborative cohort study[J]. Ophthalmology, 2016, 123(3): 599-608. |
22 | Zhou Q, Daniel E, Maguire MG, et al. Pseudodrusen and incidence of late age-related macular degeneration in fellow eyes in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2016, 123(7): 1530-1540. |
23 | Farsiu S, Chiu SJ, O′Connell RV, et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography[J]. Ophthalmology, 2014, 121(1): 162-172. |
24 | Marsiglia M, Boddu S, Bearelly S, et al. Association between geographic atrophy progression and reticular pseudodrusen in eyes with dry age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7362-7369. |
25 | Niu SJ, de Sisternes L, Chen Q, et al. Fully automated prediction of geographic atrophy growth using quantitative spectral-domain optical coherence tomography biomarkers[J]. Ophthalmology, 2016, 123(8): 1737-1750. |
26 | Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration?[J]. Retina, 2010, 30(9): 1333-1349. |
27 | Iafe NA, Phasukkijwatana N, Sarraf D. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration[J]. Dev Ophthalmol, 2016, 56: 45-51. |
28 | Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration[J]. Am J Ophthalmol, 2015, 160(4): 739-748.e2. |
29 | El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2212-2218. |
30 | Farecki ML, Gutfleisch M, Faatz H, et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-angiography[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(5): 913-921. |
31 | Nagiel A, Sarraf D, Sadda SR, et al. Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography[J]. Retina, 2015, 35(4): 638-647. |
32 | Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group[J]. Ophthalmology, 2020, 127(5): 616-636. |
33 | De Salvo G, Vaz-Pereira S, Keane PA, et al. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy[J]. Am J Ophthalmol, 2014, 158(6): 1228-1238.e1. |
34 | Liu R, Li JQ, Li ZJ, et al. Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography[J]. Retina, 2016, 36(4): 778-786. |
35 | Daniel E, Toth CA, Grunwald JE, et al. Risk of scar in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2014, 121(3): 656-666. |
36 | Willoughby AS, Ying GS, Toth CA, et al. Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2015, 122(9): 1846-1853.e5. |
37 | Casalino G, Stevenson MR, Bandello F, et al. Tomographic biomarkers predicting progression to fibrosis in treated neovascular age-related macular degeneration: a multimodal imaging study[J]. Ophthalmol Retina, 2018, 2(5): 451-461. |
38 | Coscas GJ, Lupidi M, Coscas F, et al. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge[J]. Retina, 2015, 35(11): 2219-2228. |
39 | Schmidt-Erfurth U, Waldstein SM, Deak GG, et al. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration[J]. Ophthalmology, 2015, 122(4): 822-832. |
40 | von der Burchard C, Treumer F, Ehlken C, et al. Retinal volume change is a reliable OCT biomarker for disease activity in neovascular AMD[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(9): 1623-1629. |
41 | Forte R, Coscas F, Serra R, et al. Long-term follow-up of quiescent choroidal neovascularisation associated with age-related macular degeneration or pachychoroid disease[J]. Br J Ophthalmol, 2020, 104(8): 1057-1063. |
42 | Al-Sheikh M, Iafe NA, Phasukkijwatana N, et al. Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography[J]. Retina, 2018, 38(2): 220-230. |
43 | Bae K, Kim HJ, Shin YK, et al. Predictors of neovascular activity during neovascular age-related macular degeneration treatment based on optical coherence tomography angiography[J]. Sci Rep, 2019, 9(1): 19240. |
44 | Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results[J]. Ophthalmology, 2020, 127(4S): S135-S145. |
45 | Waldstein SM, Wright J, Warburton J, et al. Predictive value of retinal morphology for visual acuity outcomes of different ranibizumab treatment regimens for neovascular AMD[J]. Ophthalmology, 2016, 123(1): 60-69. |
46 | Cuilla TA, Ying GS, Maguire MG, et al. Influence of the vitreomacular interface on treatment outcomes in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2015, 122(6): 1203-1211. |
47 | Ashraf M, Souka A, Adelman RA. Age-related macular degeneration: using morphological predictors to modify current treatment protocols[J]. Acta Ophthalmol, 2018, 96(2): 120-133. |
48 | Kang HM, Kwon HJ, Yi JH, et al. Subfoveal choroidal thickness as a potential predictor of visual outcome and treatment response after intravitreal ranibizumab injections for typical exudative age-related macular degeneration[J]. Am J Ophthalmol, 2014, 157(5): 1013-1021. |
49 | Midena E, Vujosevic S, Convento E, et al. Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration[J]. Br J Ophthalmol, 2007, 91(11): 1499-1503. |
50 | Paques M, Meimon S, Rossant F, et al. Adaptive optics ophthalmoscopy: application to age-related macular degeneration and vascular diseases[J]. Prog Retin Eye Res, 2018, 66: 1-16. |
51 | Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning[J]. Ophthalmology, 2018, 125(4): 549-558. |
52 | Saha S, Nassisi M, Wang M, et al. Automated detection and classification of early AMD biomarkers using deep learning[J]. Sci Rep, 2019, 9(1): 10990. |
[1] | Li-ying LUO, Min TANG, Xiao-qiong XIANG, Yang FU. Preliminary analysis of retinal microvasculature and thickness in constant exotropia adults [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1068-1073. |
[2] | Gong CHEN, Xi SHEN. Application of OCT and OCTA to chronic ocular ischemic diseases caused by carotid stenosis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(8): 1109-1113. |
[3] | Han-ying WANG, Yan JIANG, Ching-yi WANG, Xin SHI, Tian NIU, Xin-dan XING, Yin-chen SHEN, Chong CHEN, Kun LIU. Detection of vessel density changes in eyes of patients with diabetic retinopathy and diabetic macular edema using optical coherence tomography angiography [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 166-172. |
[4] | ZHANG Qiong1, LIN Zhong-jing1, ZHANG Shi-sheng2, HU Qi-wei1, SHEN Xi1, XU Jian-min1. Application of optical coherence tomography angiography to evaluation of clinical effect of anti-vascular endothelial growth factor agents on wet age-related macular degeneration [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(08): 1091-1097. |
[5] | CHEN Yu-hong1*, XIANG Xiao-qiong1*, ZHU Hong1, 2, SUN Tao1, LI Xian-Chen3, WANG Hong1. Macular blood flow changes assessedoptical coherence tomography angiography after pars plana vitrectomy with gas or silicone oil tamponade for the patients with rhegmatogenous retinal detachment [J]. , 2019, 39(6): 605-. |
[6] | XU Yu-peng1*, DU Yu-chen1, 2*, CHEN Feng-e1. Automatic layer segmentation of optical coherence tomography images in retinal vascular diseases [J]. , 2019, 39(6): 613-. |
[7] | XIANG Xiao-qiong, LUO Li-ying, TANG Min, FU-Yang. Application of optical coherence tomography angiography in children with anisometropic amblyopia [J]. , 2019, 39(1): 79-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||