Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (6): 813-818.doi: 10.3969/j.issn.1674-8115.2022.06.017
• Review • Previous Articles
Received:
2022-05-13
Accepted:
2022-05-30
Online:
2022-06-28
Published:
2022-08-19
Contact:
HE Ben
E-mail:Jy18964441506@163.com;drheben@126.com
Supported by:
CLC Number:
JIANG Yue, HE Ben. Research progress of invasive functional assessment of coronary artery disease[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 813-818.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.06.017
Study | Year | Patients | Cut-off value | Primary endpoint | Conclusion |
---|---|---|---|---|---|
DEFER[ | 2001 | 91 | <0.75 | adverse cardiac events | DEFER vs PEFORM (FFR guided) P=0.21 |
FAME[ | 2009 | 509 | ≤0.80 | MACE | FFR vs CAG P<0.001 |
FAME 2[ | 2012 | 447 | ≤0.80 | MACE | FFR-guided PCI + OMT vs OMT P<0.001 |
FAME 3[ | 2022 | 1 500 | ≤0.80 | MACCE | FFR-guided PCI vs CABG (three-vessel CAD) P=0.35 for noninferiority |
AGARWAL, et al[ | 2016 | 574 | ≤0.86 | MACE | Final FFR ≤0.86 had incremental prognostic value over clinical and angiographic variables for MACE prediction |
Tab 1 Clinical application of FFR
Study | Year | Patients | Cut-off value | Primary endpoint | Conclusion |
---|---|---|---|---|---|
DEFER[ | 2001 | 91 | <0.75 | adverse cardiac events | DEFER vs PEFORM (FFR guided) P=0.21 |
FAME[ | 2009 | 509 | ≤0.80 | MACE | FFR vs CAG P<0.001 |
FAME 2[ | 2012 | 447 | ≤0.80 | MACE | FFR-guided PCI + OMT vs OMT P<0.001 |
FAME 3[ | 2022 | 1 500 | ≤0.80 | MACCE | FFR-guided PCI vs CABG (three-vessel CAD) P=0.35 for noninferiority |
AGARWAL, et al[ | 2016 | 574 | ≤0.86 | MACE | Final FFR ≤0.86 had incremental prognostic value over clinical and angiographic variables for MACE prediction |
Study | Year | Patients | Design | Primary endpoint | Conclusion |
---|---|---|---|---|---|
RESOLVE[ | 2012 | 1 768 | FFR contrast | ‒ | iFR-FFR R2=0.66 |
DEFINE-FLAIR[ | 2017 | 2 492 | iFR-FFR | MACE | iFR-FFR P<0.001 for noninferiority |
iFR-SWEDEHEART[ | 2017 | 2 037 | iFR-FFR | death from any cause, nonfatal MI, or unplanned revascularization | iFR-FFR P=0.007 for noninferiority |
DEFINE PCI[ | 2022 | 500 | post-PCI | death from cardiac cause, nonfatal MI, or unplanned revascularization | 68% relative reduction in clinical events at 1 yr. follow-up among patients achieving post-PCI iFR ≥ 0.95, P=0.04 |
EL HAJJ et al[ | 2021 | 125 | LM leision | ‒ | iFR≤0.89 was associated with IVUS-MLA <6 mm2 (LM leision) |
Tab 2 Comparative validation and clinical application of iFR
Study | Year | Patients | Design | Primary endpoint | Conclusion |
---|---|---|---|---|---|
RESOLVE[ | 2012 | 1 768 | FFR contrast | ‒ | iFR-FFR R2=0.66 |
DEFINE-FLAIR[ | 2017 | 2 492 | iFR-FFR | MACE | iFR-FFR P<0.001 for noninferiority |
iFR-SWEDEHEART[ | 2017 | 2 037 | iFR-FFR | death from any cause, nonfatal MI, or unplanned revascularization | iFR-FFR P=0.007 for noninferiority |
DEFINE PCI[ | 2022 | 500 | post-PCI | death from cardiac cause, nonfatal MI, or unplanned revascularization | 68% relative reduction in clinical events at 1 yr. follow-up among patients achieving post-PCI iFR ≥ 0.95, P=0.04 |
EL HAJJ et al[ | 2021 | 125 | LM leision | ‒ | iFR≤0.89 was associated with IVUS-MLA <6 mm2 (LM leision) |
Study | Year | Patients | Design | Primary endpoint | Conclusion |
---|---|---|---|---|---|
FAVOR Pilot[ | 2016 | 1 768 | FFR contrast (core laboratories) | ‒ | cQFR-FFR AUC=0.92 |
FAVOR Ⅱ China[ | 2017 | 2 492 | FFR contrast (catheterization laboratory) | ‒ | QFR-FFR AUC=0.96 |
FAVOR Ⅱ Europe/Japan[ | 2018 | 2 037 | FFR contrast (catheterization laboratory) | ‒ | QFR-FFR AUC=0.92 |
TU et al[ | 2021 | 306 | FFR contrast (core laboratories) | ‒ | μQFR-FFR r=0.90 |
FAVOR Ⅲ China[ | 2021 | 3 847 | QFR-CAG | MACE | QFR-guided vs CAG-guided P<0.001 |
VAN DIEMEN et al[ | 2020 | 208 | FFR-QFR/SPECT/PET | ‒ | QFR vs SPECT/PET AUC=0.94 vs 0.63/0.82 |
HAWKEYE[ | 2019 | 602 | post-PCI | VOCE | post-PCI QFR ≤0.89 was associated with a 3-fold increase in risk for VOCE |
TANG et al[ | 2019 | 354 | functional SYNTAX score | MACE | Q-rFSS has a better prognostic ability for the risk of MACE AUC=0.74 |
Tab 3 Comparative validation and clinical application of QFR
Study | Year | Patients | Design | Primary endpoint | Conclusion |
---|---|---|---|---|---|
FAVOR Pilot[ | 2016 | 1 768 | FFR contrast (core laboratories) | ‒ | cQFR-FFR AUC=0.92 |
FAVOR Ⅱ China[ | 2017 | 2 492 | FFR contrast (catheterization laboratory) | ‒ | QFR-FFR AUC=0.96 |
FAVOR Ⅱ Europe/Japan[ | 2018 | 2 037 | FFR contrast (catheterization laboratory) | ‒ | QFR-FFR AUC=0.92 |
TU et al[ | 2021 | 306 | FFR contrast (core laboratories) | ‒ | μQFR-FFR r=0.90 |
FAVOR Ⅲ China[ | 2021 | 3 847 | QFR-CAG | MACE | QFR-guided vs CAG-guided P<0.001 |
VAN DIEMEN et al[ | 2020 | 208 | FFR-QFR/SPECT/PET | ‒ | QFR vs SPECT/PET AUC=0.94 vs 0.63/0.82 |
HAWKEYE[ | 2019 | 602 | post-PCI | VOCE | post-PCI QFR ≤0.89 was associated with a 3-fold increase in risk for VOCE |
TANG et al[ | 2019 | 354 | functional SYNTAX score | MACE | Q-rFSS has a better prognostic ability for the risk of MACE AUC=0.74 |
1 | PIJLS N H, SON J A V, KIRKEEIDE R L, et al. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty[J]. Circulation, 1993, 87(4): 1354-1367. |
2 | 韩雅玲. 中国经皮冠状动脉介入治疗指南(2016) [J]. 中华心血管病杂志, 2016, 44(05): 382-400. |
Han Y L. Guidelines for percutaneous coronary intervention in China (2016) [J]. Chin J Cardiol, 2016, 44(05): 382-400. | |
3 | KOLH P, WINDECKER S, ALFONSO F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI)[J]. Eur J Cardiothorac Surg, 2014, 46(4): 517-592. |
4 | «中国冠状动脉血流储备分数测定技术临床路径专家共识»专家组. 中国冠状动脉血流储备分数测定技术临床路径专家共识[J]. 中国介入心脏病学杂志, 2019, 27(03): 121-133. |
Expert Group on Chinese Expert Consensus on Clinical Pathway of Coronary Flow Reverse Measurement Technology. Chinese expert consensus on clinical pathway of coronary flow reverse measurement technology[J]. Chin J Interv Cardiol, 2019, 27(03): 121-133. | |
5 | PIJLS N H J, VAN SCHAARDENBURGH P, MANOHARAN G, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study[J]. J Am Coll Cardiol, 2007, 49(21): 2105-2111. |
6 | TONINO P A L, DE BRUYNE B, PIJLS N H J, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention[J]. N Engl J Med, 2009, 360(3): 213-224. |
7 | PIJLS N H J, FEARON W F, TONINO P A L, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study[J]. J Am Coll Cardiol, 2010, 56(3): 177-184. |
8 | VAN NUNEN L X, ZIMMERMANN F M, TONINO P A L, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial[J]. Lancet, 2015, 386(10006): 1853-1860. |
9 | VÖLZ S, DWORECK C, REDFORS B, et al. Survival of patients with angina pectoris undergoing percutaneous coronary intervention with intracoronary pressure wire guidance[J]. J Am Coll Cardiol, 2020, 75(22): 2785-2799. |
10 | SUD M, HAN L, KOH M, et al. Association between adherence to fractional flow reserve treatment thresholds and major adverse cardiac events in patients with coronary artery disease[J]. JAMA, 2020, 324(23): 2406-2414. |
11 | SHIONO Y, KURAMITSU S, MATSUO H, et al. Thrombotic risk and cardiovascular events in patients with revascularization deferral after fractional flow reserve assessment[J]. JACC Cardiovasc Interv, 2022, 15(4): 427-439. |
12 | PUYMIRAT E, CAYLA G, SIMON T, et al. Multivessel PCI guided by FFR or angiography for myocardial infarction[J]. N Engl J Med, 2021, 385(4): 297-308. |
13 | WALD D S, HADYANTO S, BESTWICK J P. Should fractional flow reserve follow angiographic visual inspection to guide preventive percutaneous coronary intervention in ST-elevation myocardial infarction? [J]. Eur Heart J Qual Care Clin Outcomes, 2020, 6(3): 186-192. |
14 | FEARON W F, ZIMMERMANN F M, DE BRUYNE B, et al. Fractional flow reserve-guided PCI as compared with coronary bypass surgery[J]. N Engl J Med, 2022, 386(2): 128-137. |
15 | AHN J M, ZIMMERMANN F M, ARORA S, et al. Prognostic value of comprehensive intracoronary physiology assessment early after heart transplantation[J]. Eur Heart J, 2021, 42(48): 4918-4929. |
16 | DE BRUYNE B, PIJLS N H J, KALESAN B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease[J]. N Engl J Med, 2012, 367(11): 991-1001. |
17 | AGARWAL S K, KASULA S, HACIOGLU Y, et al. Utilizing post-intervention fractional flow reserve to optimize acute results and the relationship to long-term outcomes[J]. JACC Cardiovasc Interv, 2016, 9(10): 1022-1031. |
18 | SEN S Y, ESCANED J, MALIK I S, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (adenosine vasodilator independent stenosis evaluation) study[J]. J Am Coll Cardiol, 2012, 59(15): 1392-1402. |
19 | JEREMIAS A, MAEHARA A, GÉNÉREUX P, et al. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study[J]. J Am Coll Cardiol, 2014, 63(13): 1253-1261. |
20 | DAVIES J E, SEN S Y, DEHBI H M, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI[J]. N Engl J Med, 2017, 376(19): 1824-1834. |
21 | OMORI H, KAWASE Y, MIZUKAMI T, et al. Comparisons of nonhyperemic pressure ratios: predicting functional results of coronary revascularization using longitudinal vessel interrogation[J]. JACC Cardiovasc Interv, 2020, 13(22): 2688-2698. |
22 | EL HAJJ S C, TOYA T, WARISAWA T, et al. Correlation of intravascular ultrasound and instantaneous wave-free ratio in patients with intermediate left main coronary artery disease[J]. Circ Cardiovasc Interv, 2021, 14(6): e009830. |
23 | PATEL M R, JEREMIAS A, MAEHARA A, et al. 1-year outcomes of blinded physiological assessment of residual ischemia after successful PCI: define PCI trial[J]. JACC Cardiovasc Interv, 2022, 15(1): 52-61. |
24 | WARISAWA T, COOK C M, HOWARD J P, et al. Physiological pattern of disease assessed by pressure-wire pullback has an influence on fractional flow reserve/instantaneous wave-free ratio discordance[J]. Circ Cardiovasc Interv, 2019, 12(5): e007494. |
25 | FARIA D C, LEE J M, VAN DER HOEF T, et al. Age and functional relevance of coronary stenosis: a post hoc analysis of the ADVISE Ⅱ trial[J]. EuroIntervention, 2021, 17(9): 757-764. |
26 | DÉRIMAY F, JOHNSON N P, ZIMMERMANN F M, et al. Predictive factors of discordance between the instantaneous wave-free ratio and fractional flow reserve[J]. Catheter Cardiovasc Interv, 2019, 94(3): 356-363. |
27 | COOK C M, JEREMIAS A, PETRACO R, et al. Fractional flow reserve/instantaneous wave-free ratio discordance in angiographically intermediate coronary stenoses: an analysis using Doppler-derived coronary flow measurements[J]. JACC Cardiovasc Interv, 2017, 10(24): 2514-2524. |
28 | LEE S H, CHOI K H, LEE J M, et al. Physiologic characteristics and clinical outcomes of patients with discordance between FFR and iFR[J]. JACC Cardiovasc Interv, 2019, 12(20): 2018-2031. |
29 | GÖTBERG M, CHRISTIANSEN E H, GUDMUNDSDOTTIR I J, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI[J]. N Engl J Med, 2017, 376(19): 1813-1823. |
30 | TU S X, WESTRA J, YANG J Q, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study[J]. JACC Cardiovasc Interv, 2016, 9(19): 2024-2035. |
31 | XU B, TU S X, QIAO S B, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis[J]. J Am Coll Cardiol, 2017, 70(25): 3077-3087. |
32 | WESTRA J, ANDERSEN B K, CAMPO G, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR Ⅱ Europe-Japan study[J]. J Am Heart Assoc, 2018, 7(14): e009603. |
33 | XU B, TU S X, SONG L, et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR Ⅲ China): a multicentre, randomised, sham-controlled trial[J]. Lancet, 2021, 398(10317): 2149-2159. |
34 | VAN DIEMEN P A, DRIESSEN R S, KOOISTRA R A, et al. Comparison between the performance of quantitative flow ratio and perfusion imaging for diagnosing myocardial ischemia[J]. JACC Cardiovasc Imaging, 2020, 13(9): 1976-1985. |
35 | TU S X, DING D X, CHANG Y X, et al. Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: a novel method based on bifurcation fractal law[J]. Catheter Cardiovasc Interv, 2021, 97(Suppl 2): 1040-1047. |
36 | BISCAGLIA S, TEBALDI M, BRUGALETTA S, et al. Prognostic value of QFR measured immediately after successful stent implantation: the international multicenter prospective HAWKEYE study[J]. JACC Cardiovasc Interv, 2019, 12(20): 2079-2088. |
37 | TANG J N, LAI Y, TU S X, et al. Quantitative flow ratio-guided residual functional SYNTAX score for risk assessment in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention[J]. EuroIntervention, 2021, 17(4): e287-e293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||