| [1] |
HUMBERT M, KOVACS G, HOEPER M M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Respir J, 2023, 61(1): 2200879.
|
| [2] |
RUOPP N F, COCKRILL B A. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327(14): 1379-1391.
|
| [3] |
HUANG H Q, HU C W, ZHANG R, et al. Global burden of pulmonary arterial hypertension and associated heart failure: Global Burden of Disease 2021 analysis[J]. JACC Heart Fail, 2025, 13(10): 102385.
|
| [4] |
GHOFRANI H A, GOMBERG-MAITLAND M, ZHAO L, et al. Mechanisms and treatment of pulmonary arterial hypertension[J]. Nat Rev Cardiol, 2025, 22(2): 105-120.
|
| [5] |
CHOUVARINE P, GIERA M, KASTENMÜLLER G, et al. Trans-right ventricle and transpulmonary metabolite gradients in human pulmonary arterial hypertension[J]. Heart, 2020, 106(17): 1332-1341.
|
| [6] |
LEMASTERS J J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5.
|
| [7] |
WANG S L, LONG H J, HOU L J, et al. The mitophagy pathway and its implications in human diseases[J]. Signal Transduct Target Ther, 2023, 8(1): 304.
|
| [8] |
GAN Z Y, CALLEGARI S, COBBOLD S A, et al. Activation mechanism of PINK1[J]. Nature, 2022, 602(7896): 328-335.
|
| [9] |
LIU B H, XU C Z, LIU Y, et al. Mitochondrial quality control in human health and disease[J]. Mil Med Res, 2024, 11(1): 32.
|
| [10] |
VARGAS J N S, HAMASAKI M, KAWABATA T, et al. The mechanisms and roles of selective autophagy in mammals[J]. Nat Rev Mol Cell Biol, 2023, 24(3): 167-185.
|
| [11] |
LU Y Y, LI Z J, ZHANG S Q, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation[J]. Theranostics, 2023, 13(2): 736-766.
|
| [12] |
SULKSHANE P, RAM J, THAKUR A, et al. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia[J]. Redox Biol, 2021, 45: 102047.
|
| [13] |
BI Y G, XU H X, WANG X, et al. FUNDC1 protects against doxorubicin-induced cardiomyocyte PANoptosis through stabilizing mtDNA via interaction with TUFM[J]. Cell Death Dis, 2022, 13(12): 1020.
|
| [14] |
LV M Q, WANG C Y, LI F D, et al. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy[J]. Protein Cell, 2017, 8(1): 25-38.
|
| [15] |
LIU H, ZANG C X, YUAN F Y, et al. The role of FUNDC1 in mitophagy, mitochondrial dynamics and human diseases[J]. Biochem Pharmacol, 2022, 197: 114891.
|
| [16] |
HUMBERT M, SITBON O, GUIGNABERT C, et al. Treatment of pulmonary arterial hypertension: recent progress and a look to the future[J]. Lancet Respir Med, 2023, 11(9): 804-819.
|
| [17] |
NIIHORI M, JAMES J, VARGHESE M V, et al. Mitochondria as a primary determinant of angiogenic modality in pulmonary arterial hypertension[J]. J Exp Med, 2024, 221(11): e20231568.
|
| [18] |
MA B H, CAO Y Y, QIN J, et al. Pulmonary artery smooth muscle cell phenotypic switching: a key event in the early stage of pulmonary artery hypertension[J]. Drug Discov Today, 2023, 28(5): 103559.
|
| [19] |
JAMES J, ZEMSKOVA M, ECCLES C A, et al. Single mutation in the NFU1 gene metabolically reprograms pulmonary artery smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2021, 41(2): 734-754.
|
| [20] |
REHMAN R, DIEFFENBACH P, VELLARIKKAL S K, et al. PINK1/Parkin deficiency enhances vascular remodeling and aggravates hypoxia-induced pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2025.
|
| [21] |
CHU C Y, LIU S B, YU Y J, et al. Swietenine alleviates vascular remodelling by enhancing mitophagy of pulmonary arterial smooth muscle cells in experimental pulmonary hypertension[J]. Can J Cardiol, 2023, 39(5): 646-659.
|
| [22] |
PULLAMSETTI S S, MAMAZHAKYPOV A, WEISSMANN N, et al. Hypoxia-inducible factor signaling in pulmonary hypertension[J]. J Clin Invest, 2020, 130(11): 5638-5651.
|
| [23] |
CHI P L, CHENG C C, WANG M T, et al. Induced pluripotent stem cell-derived exosomes attenuate vascular remodelling in pulmonary arterial hypertension by targeting HIF-1α and Runx2[J]. Cardiovasc Res, 2024, 120(2): 203-214.
|
| [24] |
LIU M, HE H X, FAN F L, et al. Maresin-1 protects against pulmonary arterial hypertension by improving mitochondrial homeostasis through ALXR/HSP90α axis[J]. J Mol Cell Cardiol, 2023, 181: 15-30.
|
| [25] |
LIU R X, XU C L, ZHANG W L, et al. FUNDC1-mediated mitophagy and HIF1α activation drives pulmonary hypertension during hypoxia[J]. Cell Death Dis, 2022, 13(7): 634.
|
| [26] |
SARAJI A, SYDYKOV A, SCHÄFER K, et al. PINK1-mediated mitophagy contributes to pulmonary vascular remodeling in pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2021, 65(2): 226-228.
|
| [27] |
CHEN C Y, QIN S R, SONG X H, et al. PI3K p85α/HIF-1α accelerates the development of pulmonary arterial hypertension by regulating fatty acid uptake and mitophagy[J]. Mol Med, 2024, 30(1): 208.
|
| [28] |
EVANS C E, COBER N D, DAI Z Y, et al. Endothelial cells in the pathogenesis of pulmonary arterial hypertension[J]. Eur Respir J, 2021, 58(3): 2003957.
|
| [29] |
HIRSCHENSON J, MELGAR-BERMUDEZ E, MAILLOUX R J. The uncoupling proteins: a systematic review on the mechanism used in the prevention of oxidative stress[J]. Antioxidants (Basel), 2022, 11(2): 322.
|
| [30] |
HASLIP M, DOSTANIC I, HUANG Y, et al. Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia[J]. Arterioscler Thromb Vasc Biol, 2015, 35(5): 1166-1178.
|
| [31] |
PEI Y D, REN D F, YIN Y H, et al. Endothelial FUNDC1 deficiency drives pulmonary hypertension[J]. Circ Res, 2025, 136(2): e1-e19.
|
| [32] |
ZHANG R, LU M L, RAN C Y, et al. Ginsenoside Rg1 improves hypoxia-induced pulmonary vascular endothelial dysfunction through TXNIP/NLRP3 pathway-modulated mitophagy[J]. J Ginseng Res, 2025, 49(1): 80-91.
|
| [33] |
TANG B L, LIU Y, ZHANG J L, et al. Ginsenoside Rg1 ameliorates hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and inflammation by regulating CCN1[J]. Biomed Pharmacother, 2023, 164: 114920.
|
| [34] |
ALVES-SILVA J M, ZUZARTE M, MARQUES C, et al. 1,8-Cineole reduces pulmonary vascular remodelling in pulmonary arterial hypertension by restoring intercellular communication and inhibiting angiogenesis[J]. Phytomedicine, 2025, 137: 156334.
|
| [35] |
RONG W W, LIU C C, LI X M, et al. Caspase-8 promotes pulmonary hypertension by activating macrophage-associated inflammation and IL-1β (interleukin 1β) production[J]. Arterioscler Thromb Vasc Biol, 2022, 42(5): 613-631.
|
| [36] |
JIMÉNEZ-LOYGORRI J I, VILLAREJO-ZORI B, VIEDMA-POYATOS Á, et al. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging[J]. Nat Commun, 2024, 15(1): 830.
|
| [37] |
TANG X J, ZHONG L C, TIAN X, et al. RUNX1 promotes mitophagy and alleviates pulmonary inflammation during acute lung injury[J]. Signal Transduct Target Ther, 2023, 8(1): 288.
|
| [38] |
PATOLI D, MIGNOTTE F, DECKERT V, et al. Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis[J]. J Clin Invest, 2020, 130(11): 5858-5874.
|
| [39] |
GOH Z M, BALASUBRAMANIAN N, ALABED S, et al. Right ventricular remodelling in pulmonary arterial hypertension predicts treatment response[J]. Heart, 2022, 108(17): 1392-1400.
|
| [40] |
TIAN L, WU D C, DASGUPTA A, et al. Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: a pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis[J]. Circ Res, 2020, 126(12): 1723-1745.
|
| [41] |
KWAN E D, VÉLEZ-RENDÓN D, ZHANG X Y, et al. Distinct time courses and mechanics of right ventricular hypertrophy and diastolic stiffening in a male rat model of pulmonary arterial hypertension[J]. Am J Physiol Heart Circ Physiol, 2021, 321(4): H702-H715.
|
| [42] |
MIRANI B, DAUZ J D, YAZAKI K, et al. Right ventricular stiffening and function are associated with main pulmonary artery remodeling in a rat model of pulmonary hypertension[J]. Arterioscler Thromb Vasc Biol, 2025, 45(6): 945-964.
|
| [43] |
ZHAO H, SONG J L, LI X J, et al. The role of immune cells and inflammation in pulmonary hypertension: mechanisms and implications[J]. Front Immunol, 2024, 15: 1374506.
|
| [44] |
HEMNES A R, CELERMAJER D S, D'ALTO M, et al. Pathophysiology of the right ventricle and its pulmonary vascular interaction[J]. Eur Respir J, 2024, 64(4): 2401321.
|
| [45] |
ZHANG Y N, ZERVOPOULOS S D, BOUKOURIS A E, et al. SNPs for genes encoding the mitochondrial proteins sirtuin3 and uncoupling protein 2 are associated with disease severity, type 2 diabetes, and outcomes in patients with pulmonary arterial hypertension and this is recapitulated in a new mouse model lacking both genes[J]. J Am Heart Assoc, 2021, 10(23): e020451.
|
| [46] |
LUO F M, FU M Y, WANG T, et al. Down-regulation of the mitochondrial fusion protein Opa1/Mfn2 promotes cardiomyocyte hypertrophy in Su5416/hypoxia-induced pulmonary hypertension rats[J]. Arch Biochem Biophys, 2023, 747: 109743.
|
| [47] |
ALVES-SILVA J M, ZUZARTE M, MARQUES C, et al. 1,8-Cineole ameliorates right ventricle dysfunction associated with pulmonary arterial hypertension by restoring connexin43 and mitochondrial homeostasis[J]. Pharmacol Res, 2022, 180: 106151.
|
| [48] |
DENG Y, WU W F, GUO S L, et al. Altered mTOR and Beclin-1 mediated autophagic activation during right ventricular remodeling in monocrotaline-induced pulmonary hypertension[J]. Respir Res, 2017, 18(1): 53.
|
| [49] |
FENG W, WANG J, YAN X, et al. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension[J]. Cell Prolif, 2021, 54(6): e13048.
|
| [50] |
AJOOLABADY A, CHIONG M, LAVANDERO S, et al. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment[J]. Trends Mol Med, 2022, 28(10): 836-849.
|