JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (7): 920-925.doi: 10.3969/j.issn.1674-8115.2021.07.012
• Clinical research • Previous Articles
Xiang LIU1(), Hui-hui XIE1, Yu-feng XU1, Xiao-feng TAO2, Lin LIU3, Di-jia WU4, Xiao-ying WANG1(
)
Online:
2021-07-28
Published:
2021-08-03
Contact:
Xiao-ying WANG
E-mail:lx_mango@163.com;wangxiao_ying@bjmu.edu.cn;wangxiaoying@bjmu.edu.cn
CLC Number:
Xiang LIU, Hui-hui XIE, Yu-feng XU, Xiao-feng TAO, Lin LIU, Di-jia WU, Xiao-ying WANG. Application of artificial intelligence to CT diagnosis of thoracic traumatic rib sites: a preliminary study[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(7): 920-925.
Rib site | True positive /reference standard | False positive | Total detected lesion | |||
---|---|---|---|---|---|---|
Displaced RF | Mild RF | Buckle RF | Total | |||
R01 | 2/2 | 1/2 | 0/0 | 3/4 | 4 | 7 |
R02 | 5/5 | 2/4 | 0/3 | 7/12 | 2 | 9 |
R03 | 7/8 | 5/5 | 10/12 | 22/25 | 5 | 27 |
R04 | 16/16 | 1/1 | 16/22 | 33/39 | 9 | 42 |
R05 | 15/15 | 6/8 | 21/30 | 42/53 | 7 | 49 |
R06 | 11/12 | 3/4 | 24/27 | 38/43 | 5 | 43 |
R07 | 7/9 | 7/10 | 21/27 | 35/46 | 5 | 40 |
R08 | 8/8 | 2/5 | 13/16 | 23/29 | 13 | 36 |
R09 | 9/9 | 5/5 | 7/10 | 21/24 | 9 | 30 |
R10 | 7/7 | 3/4 | 4/6 | 14/17 | 10 | 24 |
R11 | 3/3 | 3/3 | 2/3 | 8/9 | 8 | 16 |
R12 | 1/1 | 0/0 | 0/0 | 1/1 | 4 | 5 |
L01 | 3/3 | 1/1 | 1/1 | 5/5 | 7 | 12 |
L02 | 3/3 | 8/10 | 4/6 | 15/19 | 1 | 16 |
L03 | 9/11 | 2/3 | 14/21 | 25/35 | 6 | 31 |
L04 | 12/12 | 2/4 | 14/23 | 28/39 | 9 | 37 |
L05 | 10/10 | 3/4 | 26/33 | 39/47 | 7 | 46 |
L06 | 10/10 | 7/7 | 24/26 | 41/43 | 10 | 51 |
L07 | 11/11 | 8/9 | 19/23 | 38/43 | 13 | 51 |
L08 | 8/8 | 7/7 | 12/16 | 27/31 | 6 | 33 |
L09 | 10/12 | 6/6 | 8/10 | 24/28 | 6 | 30 |
L10 | 13/14 | 5/6 | 3/5 | 21/25 | 9 | 30 |
L11 | 3/3 | 1/3 | 0/2 | 4/8 | 8 | 12 |
L12 | 1/2 | 0/2 | 0/1 | 1/5 | 11 | 12 |
Tab 1 Distribution and detection of rib fracture lesions (n)
Rib site | True positive /reference standard | False positive | Total detected lesion | |||
---|---|---|---|---|---|---|
Displaced RF | Mild RF | Buckle RF | Total | |||
R01 | 2/2 | 1/2 | 0/0 | 3/4 | 4 | 7 |
R02 | 5/5 | 2/4 | 0/3 | 7/12 | 2 | 9 |
R03 | 7/8 | 5/5 | 10/12 | 22/25 | 5 | 27 |
R04 | 16/16 | 1/1 | 16/22 | 33/39 | 9 | 42 |
R05 | 15/15 | 6/8 | 21/30 | 42/53 | 7 | 49 |
R06 | 11/12 | 3/4 | 24/27 | 38/43 | 5 | 43 |
R07 | 7/9 | 7/10 | 21/27 | 35/46 | 5 | 40 |
R08 | 8/8 | 2/5 | 13/16 | 23/29 | 13 | 36 |
R09 | 9/9 | 5/5 | 7/10 | 21/24 | 9 | 30 |
R10 | 7/7 | 3/4 | 4/6 | 14/17 | 10 | 24 |
R11 | 3/3 | 3/3 | 2/3 | 8/9 | 8 | 16 |
R12 | 1/1 | 0/0 | 0/0 | 1/1 | 4 | 5 |
L01 | 3/3 | 1/1 | 1/1 | 5/5 | 7 | 12 |
L02 | 3/3 | 8/10 | 4/6 | 15/19 | 1 | 16 |
L03 | 9/11 | 2/3 | 14/21 | 25/35 | 6 | 31 |
L04 | 12/12 | 2/4 | 14/23 | 28/39 | 9 | 37 |
L05 | 10/10 | 3/4 | 26/33 | 39/47 | 7 | 46 |
L06 | 10/10 | 7/7 | 24/26 | 41/43 | 10 | 51 |
L07 | 11/11 | 8/9 | 19/23 | 38/43 | 13 | 51 |
L08 | 8/8 | 7/7 | 12/16 | 27/31 | 6 | 33 |
L09 | 10/12 | 6/6 | 8/10 | 24/28 | 6 | 30 |
L10 | 13/14 | 5/6 | 3/5 | 21/25 | 9 | 30 |
L11 | 3/3 | 1/3 | 0/2 | 4/8 | 8 | 12 |
L12 | 1/2 | 0/2 | 0/1 | 1/5 | 11 | 12 |
Type | Sensitivity |
---|---|
All the traumatic changes | 81.75 (515/630) |
Displaced rib fracture | 94.85 (184/194) |
Mild rib fracture | 77.88 (88/113) |
Buckle rib fracture | 75.23 (243/323) |
Tab 2 Sensitivity of AI software in detecting rib fracture (lesion level) [% (n/n)]
Type | Sensitivity |
---|---|
All the traumatic changes | 81.75 (515/630) |
Displaced rib fracture | 94.85 (184/194) |
Mild rib fracture | 77.88 (88/113) |
Buckle rib fracture | 75.23 (243/323) |
Type | Level | SEN/% | SPE/% | PPV/% | NPV/% | PLR | NLR |
---|---|---|---|---|---|---|---|
All the traumatic changes | Patient | 90.91 | 76.21 | 77.63 | 90.23 | 3.82 | 0.12 |
Rib | 82.45 | 98.33 | 75.30 | 98.91 | 49.37 | 0.18 | |
Displaced rib fracture | Patient | 95.56 | 74.59 | 52.76 | 98.26 | 3.76 | 0.06 |
Rib | 94.57 | 98.26 | 51.94 | 99.89 | 54.35 | 0.06 |
Tab 3 Diagnostic efficiency of AI software in detecting rib fractures (patient and rib level)
Type | Level | SEN/% | SPE/% | PPV/% | NPV/% | PLR | NLR |
---|---|---|---|---|---|---|---|
All the traumatic changes | Patient | 90.91 | 76.21 | 77.63 | 90.23 | 3.82 | 0.12 |
Rib | 82.45 | 98.33 | 75.30 | 98.91 | 49.37 | 0.18 | |
Displaced rib fracture | Patient | 95.56 | 74.59 | 52.76 | 98.26 | 3.76 | 0.06 |
Rib | 94.57 | 98.26 | 51.94 | 99.89 | 54.35 | 0.06 |
1 | Liman ST, Kuzucu A, Tastepe AI, et al. Chest injury due to blunt trauma[J]. Eur J Cardiothorac Surg, 2003, 23(3): 374-378. |
2 | Ivey KM, White CE, Wallum TE, et al. Thoracic injuries in US combat casualties: a 10-year review of Operation Enduring Freedom and Iraqi Freedom[J]. J Trauma Acute Care Surg, 2012, 73(6 ): S514-S519. |
3 | Bemelman M, de Kruijf MW, van Baal M, et al. Rib fractures: to fix or not to fix? An evidence-based algorithm[J]. Korean J Thorac Cardiovasc Surg, 2017, 50(4): 229-234. |
4 | de Jong MB, Kokke MC, Hietbrink F, et al. Surgical management of rib fractures: strategies and literature review[J]. Scand J Surg, 2014, 103(2): 120-125. |
5 | Chung JH, Cox CW, Mohammed TL, et al. ACR appropriateness criteria blunt chest trauma[J]. J Am Coll Radiol, 2014, 11(4): 345-351. |
6 | Livingston DH, Shogan B, John P, et al. CT diagnosis of rib fractures and the prediction of acute respiratory failure[J]. J Trauma, 2008, 64(4): 905-911. |
7 | Talbot BS, Gange CP Jr, Chaturvedi A, et al. Traumatic rib injury: patterns, imaging pitfalls, complications, and treatment[J]. Radiographics, 2017, 37(2): 628-651. |
8 | 李洪涛. 16层螺旋CT与DR胸片对肋骨骨折的诊断价值分析[J]. 中国继续医学教育, 2016, 8(29): 47-48. |
9 | Gurcan MN, Sahiner B, Petrick N, et al. Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system[J]. Med Phys, 2002, 29(11): 2552-2558. |
10 | Lehman CD, Blume JD, DeMartini WB, et al. Accuracy and interpretation time of computer-aided detection among novice and experienced breast MRI readers[J]. AJR Am J Roentgenol, 2013, 200(6): W683-W689. |
11 | Lin FC, Li RY, Tung YW, et al. Morbidity, mortality, associated injuries, and management of traumatic rib fractures[J]. J Chin Med Assoc, 2016, 79(6): 329-334. |
12 | Dunham CM, Hileman BM, Ransom KJ, et al. Trauma patient adverse outcomes are independently associated with rib cage fracture burden and severity of lung, head, and abdominal injuries[J]. Int J Burns Trauma, 2015, 5(1): 46-55. |
13 | Barnea Y, Kashtan H, Skornick Y, et al. Isolated rib fractures in elderly patients: mortality and morbidity[J]. Can J Surg, 2002, 45(1): 43-46. |
14 | Holcomb JB, McMullin NR, Kozar RA, et al. Morbidity from rib fractures increases after age 45[J]. J Am Coll Surg, 2003, 196(4): 549-555. |
15 | Park S. Clinical analysis for the correlation of intra-abdominal organ injury in the patients with rib fracture[J]. Korean J Thorac Cardiovasc Surg, 2012, 45(4): 246-250. |
16 | Al-Hassani A, Abdulrahman H, Afifi I, et al. Rib fracture patterns predict thoracic chest wall and abdominal solid organ injury[J]. Am Surg, 2010, 76(8): 888-891. |
17 | Park HS, Ryu SM, Cho SJ, et al. A treatment case of delayed aortic injury: the patient with posterior rib fracture[J]. Korean J Thorac Cardiovasc Surg, 2014, 47(4): 406-408. |
18 | Pan Y, Shi D, Wang H, et al. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening[J]. Eur Radiol, 2020, 30(7): 4107-4116. |
19 | Ringl H, Lazar M, Töpker M, et al. The ribs unfolded—a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients[J]. Eur Radiol, 2015, 25(7): 1865-1874. |
20 | 高歌, 马帅, 王霄英. 计算机辅助诊断在医学影像诊断中的基本原理和应用进展[J]. 放射学实践, 2016, 31(12): 1127-1129. |
21 | 高歌, 胡娟, 王成彦, 等. 整合临床及多参数MRI信息的前列腺癌CAD系统: 诊断效能研究[J]. 放射学实践, 2016, 31(12): 1143-1145. |
22 | 韩超, 朱丽娜, 刘想, 等. 基于U-Net实现前列腺MR图像上腺体的自动分割和径线测量: 临床植入验证研究[J]. 放射学实践, 2020, 35(4): 519-524. |
23 | Liu Y, Liu Q, Han C, et al. The implementation of natural language processing to extract index lesions from breast magnetic resonance imaging reports[J]. BMC Med Inform Decis Mak, 2019, 19(1): 288. |
[1] | Jian-ming YUAN, Bin WEI, Wei-xing XU, Lei ZHANG. CBCT effects of different abutment angles on alveolar bone changes in maxillary anterior teeth [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 339-343. |
[2] | Xiao-min LI, Yang QU, Shao-ting ZHANG, Liang ZHAO, Chang LIU, Shuai-ning XIE, Ke-rong DAI, Song-tao AI. Overview of the application of artificial intelligence to radiology of the musculoskeletal system [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 262-266. |
[3] | LU Yan-qiao, SHEN Lan, HE Ben. Application of artificial intelligence in assisted diagnosis and treatment of cardiovascular disease [J]. , 2020, 40(2): 259-. |
[4] | WAN Liang-rong, HUANG Gan, LIU Jian-jun. Application of quantitative 99mTcO4- SPECT/CT in determination of thyroid volume and SUV in Graves' disease [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(12): 1637-1640. |
[5] | LUO Gang, CUI Yong-chen, CAO Yue, ZHANG Jun-feng. Effect of surgical trauma on postoperative cognitive function and cerebral glucose metabolism in type 2 diabetic mice [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1468-1472. |
[6] | WANG Tao, ZHANG Chen-cheng, LI Dian-you, SUN Bo-min, FU Meng. Imaging law of postoperative electrode locations in deep brain stimulation for Parkinsons disease [J]. , 2020, 40(1): 64-. |
[7] | ZHANG Lu1, CHEN Qiang2, JIANG Bei-bei1, DING Zhen-hong2, ZHANG Li3, XIE Xue-qian1. Preliminary study on motion artifacts removal of coronary CT angiography using generative adversarial network [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(09): 1229-1235. |
[8] | RONG Wen-wen1, WANG Gang1, ZHU Qi-li2. Discussion on value of medical records-structured specialized disease database based on artificial intelligence in clinical research [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(07): 995-1000. |
[9] | WANG Hai-yan, YOU Zhi-wen, SHOU Yi, MENG Qing-yuan, CHEN Hui-qian, ZHAO Jun. Application of 18F-FDG PET/CT-guided percutaneous biopsy to differential diagnosis of peritoneal thickening diseases [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(05): 646-650. |
[10] | JIANG Bei-bei, ZHANG Ya-ping, ZHANG Lin, LIU Gui-xue, XIE Xue-qian. A visualization study of deep convolutional neural network to classify the pathological type of sub-soild pulmonary adenocarcinoma of ≤ 3 cm based on CT images [J]. , 2019, 39(9): 1045-. |
[11] | ZHU Yin-jie, WANG Yan-qing, PAN Jia-hua, DONG Bai-jun, XUE Wei. PET/CT for guidance of lymphadenectomy of high-risk prostate cancer in patients with chronic lymphocytic leukemia: 1 case report [J]. , 2019, 39(4): 440-. |
[12] | PANG Shuai1, 2, CAI Xiao-ting1, 2, CHENG Ting1, 2, ZHANG Neng-chong3, NI Jin-hua2, 4, CHENG Qi-jian1, 2. Clinical value of low attenuation area ratio and lung volume on CT in evaluating severity of spirometric abnormality [J]. , 2019, 39(11): 1284-. |
[13] | MAO Yi-Ming1, WU Chang-Jiang2. Establishment of risk prediction model for pulmonary complications in elderly patients with multiple rib fractures [J]. , 2019, 39(1): 69-. |
[14] | XIE Wei1, JIANG Xu-feng2, ZHAO Wei-li1, WANG Li1. Prognostic evaluation of different PET/CT reading methods in Hodgkin lymphoma and diffused large B-cell lymphoma [J]. , 2018, 38(8): 954-. |
[15] | YU Jin-feng, HU Yun, HUANG Ming-na, CHEN Jun, MING Ye, ZHENG Lei-lei. Three-dimensional study on symmetry of the first molar and its peripheric alveolar bone in skeletal class Ⅲ patients with mandibular deviation [J]. , 2018, 38(3): 288-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1460
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1044
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||