Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (7): 952-957.doi: 10.3969/j.issn.1674-8115.2022.07.016
• Review • Previous Articles
WANG Yang(), CHENG Jiayue, WANG Zhen(
)
Received:
2021-12-06
Accepted:
2022-06-23
Online:
2022-07-25
Published:
2022-07-25
Contact:
WANG Zhen
E-mail:wangyang_sjtu@163.com;wangzhen@smhc.org.cn
Supported by:
CLC Number:
WANG Yang, CHENG Jiayue, WANG Zhen. Progress in mechanism of transcranial direct current stimulation[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 952-957.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.07.016
1 | APARÍCIO L V M, GUARIENTI F, RAZZA L B, et al. A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials[J]. Brain Stimul, 2016, 9(5): 671-681. |
2 | LEFAUCHEUR J P, ANTAL A, AYACHE S S, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS)[J]. Clin Neurophysiol, 2017, 128(1): 56-92. |
3 | YAVARI F, JAMIL A, MOSAYEBI SAMANI M, et al. Basic and functional effects of transcranial Electrical Stimulation (tES): an introduction[J]. Neurosci Biobehav Rev, 2018, 85: 81-92. |
4 | NITSCHE M A, PAULUS W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527(Pt 3): 633-639. |
5 | PHILIP N S, NELSON B G, FROHLICH F, et al. Low-intensity transcranial current stimulation in psychiatry[J]. Am J Psychiatry, 2017, 174(7): 628-639. |
6 | NITSCHE M A, FRICKE K, HENSCHKE U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans[J]. J Physiol, 2003, 553(Pt 1): 293-301. |
7 | NITSCHE M A, GRUNDEY J, LIEBETANZ D, et al. Catecholaminergic consolidation of motor cortical neuroplasticity in humans[J]. Cereb Cortex, 2004, 14(11): 1240-1245. |
8 | HILL A T, ROGASCH N C, FITZGERALD P B, et al. TMS-EEG: a window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions[J]. Neurosci Biobehav Rev, 2016, 64: 175-184. |
9 | NITSCHE M A, SEEBER A, FROMMANN K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex[J]. J Physiol, 2005, 568(Pt 1): 291-303. |
10 | LIEBETANZ D, NITSCHE M A, TERGAU F, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability[J]. Brain, 2002, 125(Pt 10): 2238-2247. |
11 | ANASTASSIOU C A, PERIN R, MARKRAM H, et al. Ephaptic coupling of cortical neurons[J]. Nat Neurosci, 2011, 14(2): 217-223. |
12 | BRUNONI A R, NITSCHE M A, BOLOGNINI N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions[J]. Brain Stimul, 2012, 5(3): 175-195. |
13 | BEDLACK R S Jr, WEI M, LOEW L M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth[J]. Neuron, 1992, 9(3): 393-403. |
14 | RAHMAN A, REATO D, ARLOTTI M, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects[J]. J Physiol, 2013, 591(10): 2563-2578. |
15 | MCCAIG C D, RAJNICEK A M, SONG B, et al. Controlling cell behavior electrically: current views and future potential[J]. Physiol Rev, 2005, 85(3): 943-978. |
16 | MYCIELSKA M E, DJAMGOZ M B A. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease[J]. J Cell Sci, 2004, 117(Pt 9): 1631-1639. |
17 | ESHRA A, SCHMIDT H, EILERS J, et al. Calcium dependence of neurotransmitter release at a high fidelity synapse[J]. Elife, 2021, 10: e70408. |
18 | CAMBIAGHI M, BUFFELLI M, MASIN L, et al. Transcranial direct current stimulation of the mouse prefrontal cortex modulates serotonergic neural activity of the dorsal raphe nucleus[J]. Brain Stimul, 2020, 13(3): 548-550. |
19 | BACHTIAR V, JOHNSTONE A, BERRINGTON A, et al. Modulating regional motor cortical excitability with noninvasive brain stimulation results in neurochemical changes in bilateral motor cortices[J]. J Neurosci, 2018, 38(33): 7327-7336. |
20 | ANTONENKO D, THIELSCHER A, SATURNINO G B, et al. Towards precise brain stimulation: is electric field simulation related to neuromodulation? [J]. Brain Stimul, 2019, 12(5): 1159-1168. |
21 | ANTONENKO D, SCHUBERT F, BOHM F, et al. tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults[J]. J Neurosci, 2017, 37(15): 4065-4073. |
22 | LENGU K, RYAN S, PELTIER S J, et al. Effects of high definition-transcranial direct current stimulation on local GABA and glutamate levels among older adults with and without mild cognitive impairment: an exploratory study[J]. J Alzheimers Dis, 2021, 84(3): 1091-1102. |
23 | ZHAO X J, DING J, PAN H J, et al. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats[J]. J Physiol, 2020, 598(17): 3727-3745. |
24 | HEIMRATH K, BRECHMANN A, BLOBEL-LÜER R, et al. Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study[J]. Sci Rep, 2020, 10(1): 20111. |
25 | MAGEE J C, GRIENBERGER C. Synaptic plasticity forms and functions[J]. Annu Rev Neurosci, 2020, 43: 95-117. |
26 | NICOLL R A. A brief history of long-term potentiation[J]. Neuron, 2017, 93(2): 281-290. |
27 | RANIERI F, PODDA M V, RICCARDI E, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation[J]. J Neurophysiol, 2012, 107(7): 1868-1880. |
28 | FRASE L, MERTENS L, KRAHL A, et al. Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex[J]. Transl Psychiatry, 2021, 11(1): 17. |
29 | FRITSCH B, REIS J, MARTINOWICH K, et al. Direct Current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204. |
30 | YU T H, WU Y J, CHIEN, et al. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor[J]. Neuropharmacology, 2019, 144: 358-367. |
31 | PARK H, POPESCU A, POO M M. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP[J]. Neuron, 2014, 84(5): 1009-1022. |
32 | KRONBERG G, RAHMAN A, SHARMA M, et al. Direct Current stimulation boosts hebbian plasticity in vitro[J]. Brain Stimul, 2020, 13(2): 287-301. |
33 | FOX K, STRYKER M. Integrating hebbian and homeostatic plasticity: introduction[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1715): 20160413. |
34 | LI J, PARK E, ZHONG L R, et al. Homeostatic synaptic plasticity as a metaplasticity mechanism: a molecular and cellular perspective[J]. Curr Opin Neurobiol, 2019, 54: 44-53. |
35 | ABRAHAM W C, BEAR M F. Metaplasticity: the plasticity of synaptic plasticity[J]. Trends Neurosci, 1996, 19(4): 126-130. |
36 | COOPER L N, BEAR M F. The BCM theory of synapse modification at 30: interaction of theory with experiment[J]. Nat Rev Neurosci, 2012, 13(11): 798-810. |
37 | CARVALHO S, BOGGIO P S, GONÇALVES Ó F, et al. Transcranial direct current stimulation based metaplasticity protocols in working memory[J]. Brain Stimul, 2015, 8(2): 289-294. |
38 | HURLEY R, MACHADO L. Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? [J]. Neurosci Biobehav Rev, 2017, 83: 155-159. |
39 | COSENTINO G, FIERRO B, PALADINO P, et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex[J]. Eur J Neurosci, 2012, 35(1): 119-124. |
40 | BOCCI T, CALEO M, TOGNAZZI S, et al. Evidence for metaplasticity in the human visual cortex[J]. J Neural Transm (Vienna), 2014, 121(3): 221-231. |
41 | VINES B W, CERRUTI C, SCHLAUG G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation[J]. BMC Neurosci, 2008, 9: 103. |
42 | ANTAL A, POLANIA R, SCHMIDT-SAMOA C, et al. Transcranial direct current stimulation over the primary motor cortex during fMRI[J]. Neuroimage, 2011, 55(2): 590-596. |
43 | STAGG C J, BEST J G, STEPHENSON M C, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation[J]. J Neurosci, 2009, 29(16): 5202-5206. |
44 | MARSHALL L, MÖLLE M, HALLSCHMID M, et al. Transcranial direct current stimulation during sleep improves declarative memory[J]. J Neurosci, 2004, 24(44): 9985-9992. |
45 | ARIF Y, SPOONER R K, HEINRICHS-GRAHAM E, et al. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence[J]. J Physiol, 2021, 599(24): 5451-5463. |
46 | ARIF Y, SPOONER R K, WIESMAN A I, et al. Prefrontal multielectrode transcranial direct current stimulation modulates performance and neural activity serving visuospatial processing[J]. Cereb Cortex, 2020, 30(9): 4847-4857. |
47 | SPOONER R K, EASTMAN J A, REZICH M T, et al. High-definition transcranial direct current stimulation dissociates Fronto-visual Theta lateralization during visual selective attention[J]. J Physiol, 2020, 598(5): 987-998. |
48 | RUTTORF M, KRISTENSEN S, SCHAD L R, et al. Transcranial direct current stimulation alters functional network structure in humans: a graph theoretical analysis[J]. IEEE Trans Med Imaging, 2019, 38(12): 2829-2837. |
49 | LEAVER A M, GONZALEZ S, VASAVADA M, et al. Modulation of brain networks during MR-compatible transcranial direct current stimulation[J]. Neuroimage, 2022, 250: 118874. |
50 | GUO D L, LI J Y, ZHANG Y, et al. Transcranial direct current stimulation reconstructs diminished thalamocortical connectivity during prolonged resting wakefulness: a resting-state fMRI pilot study[J]. Brain Imaging Behav, 2020, 14(1): 278-288. |
51 | CHAN M M, HAN Y M. The effect of transcranial direct current stimulation in changing resting-state functional connectivity in patients with neurological disorders: a systematic review[J]. J Cent Nerv Syst Dis, 2020, 12: 1179573520976832. |
52 | KEESER D, MEINDL T, BOR J, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI[J]. J Neurosci, 2011, 31(43): 15284-15293. |
53 | PEÑA-GÓMEZ C, SALA-LONCH R, JUNQUÉ C, et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI[J]. Brain Stimul, 2012, 5(3): 252-263. |
54 | YAQUB M A, HONG K S, ZAFAR A, et al. Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals[J]. Int J Neural Syst, 2022, 32(1): 2150050. |
55 | LIU A L, VÖRÖSLAKOS M, KRONBERG G, et al. Immediate neurophysiological effects of transcranial electrical stimulation[J]. Nat Commun, 2018, 9(1): 5092. |
56 | BERGMANN T O, KARABANOV A, HARTWIGSEN G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives[J]. Neuroimage, 2016, 140: 4-19. |
57 | HORVATH J C, CARTER O, FORTE J D. Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be)[J]. Front Syst Neurosci, 2014, 8: 2. |
[1] | ZHANG Xiuqi, SHEN Baiyong. Advances in cytological mechanism of neural invasion in pancreatic ductal adenocarcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 833-838. |
[2] | Yanyan LIN, Yan XU, Hui LI. Progress in research on the mechanism of drug resistance to conventional chemotherapeutic drugs in children with acute lymphoblastic leukemia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 211-217. |
[3] | Xi KOU, Ai-min ZHAO. Research progress of hydroxychloroquine in reproductive immunology [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(3): 380-385. |
[4] | Xiao-lin ZHANG, Xiao-yun ZHANG, Gui-qin HE, Yue KONG, Zi-kai ZHOU. ATP-sensitive potassium channel negatively regulates hippocampal long-term potentiation maintenance [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 154-158. |
[5] | Lin-jie SHEN, Yu-xin HUANG, Yong WANG, Hua JIN. Review of non-invasive brain stimulation for the treatment of somatic symptoms in major depressive disorder [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1535-1539. |
[6] | Nuo-shi QIAN, Wu HONG, Chun-bo LI. Progress of transcranial direct current stimulation in the treatment of children and adolescents psychiatric disorders [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(10): 1366-1370. |
[7] | LU Fang-fang1, YAO Jia-lu2, NIU Xiao-yin3, WENG Zhen4#, HE Yang1, 4#. Therapeutic effects of albendazole on mice with artery stenosis and its mechanism [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 598-603. |
[8] | YE Hui-ling, LÜ Na, FAN Qing. Review of brain mechanism of abnormal semantic processing in major depression disorder [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 679-682. |
[9] | LI Ying-ying1, LUO Ya-ping2, FU Guo-hui1, 2, CHEN Shi-hui1. Inhibition of gastrin on catabolism of rat chondrocytes inducedinterleukin-1β [J]. , 2019, 39(8): 861-. |
[10] | WANG Ying-yi,LU Yan-hua,GENG Rui-jie,CHENG Xiao-yan,HUANG Xin-xin,Lü Qin-yu,YING Qi-ang,YI Zheng-hui. Effect of lithium carbonate on oxidative stress in patients with bipolar disorder [J]. , 2019, 39(5): 494-. |
[11] | REN Yun-jie,SHI Ye-wen,WANG Guang-he. Developmental toxicity of exposure to ambient fine particulate matter [J]. , 2019, 39(5): 550-. |
[12] | SHANG Jia-wei1, LIU Xi2, LI Ying-chuan3, WANG Ai-zhong1. Study on the of Toll-like receptor 4 and its effect on prognosis in fat embolism mice model [J]. , 2019, 39(4): 342-. |
[13] | HUANG Yu-xin, TANG Ye-zhou, ZHAO Ya-juan, FU Hao, WANG Yong, JIN Hua. Progress of transcranial direct current stimulation in the treatment of unipolar and bipolar depressive disorders [J]. , 2019, 39(12): 1460-. |
[14] | LIU Da-wei1, REN Li2, MIN Su2. Role of group Ⅰ mGluR in low dose ketamine protecting learning and memory function after electroconvulsive shock in depression rats [J]. , 2019, 39(11): 1248-. |
[15] | WANG Jun-ying1, LI Xin1, YIN Ting-yu2, LIU Jia2, WANG Xiao-dong3, ZHONG Hua1. Effects of bone marrow mesenchymal cells immune thrombocytopenia patients on the biological behaviors of megakaryocytes [J]. , 2018, 38(6): 616-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||