
Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (7): 952-957.doi: 10.3969/j.issn.1674-8115.2022.07.016
• Review • Previous Articles Next Articles
WANG Yang(
), CHENG Jiayue, WANG Zhen(
)
Received:2021-12-06
Accepted:2022-06-23
Online:2022-07-28
Published:2022-07-25
Contact:
WANG Zhen
E-mail:wangyang_sjtu@163.com;wangzhen@smhc.org.cn
Supported by:CLC Number:
WANG Yang, CHENG Jiayue, WANG Zhen. Progress in mechanism of transcranial direct current stimulation[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(7): 952-957.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.07.016
| 1 | APARÍCIO L V M, GUARIENTI F, RAZZA L B, et al. A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials[J]. Brain Stimul, 2016, 9(5): 671-681. |
| 2 | LEFAUCHEUR J P, ANTAL A, AYACHE S S, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS)[J]. Clin Neurophysiol, 2017, 128(1): 56-92. |
| 3 | YAVARI F, JAMIL A, MOSAYEBI SAMANI M, et al. Basic and functional effects of transcranial Electrical Stimulation (tES): an introduction[J]. Neurosci Biobehav Rev, 2018, 85: 81-92. |
| 4 | NITSCHE M A, PAULUS W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527(Pt 3): 633-639. |
| 5 | PHILIP N S, NELSON B G, FROHLICH F, et al. Low-intensity transcranial current stimulation in psychiatry[J]. Am J Psychiatry, 2017, 174(7): 628-639. |
| 6 | NITSCHE M A, FRICKE K, HENSCHKE U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans[J]. J Physiol, 2003, 553(Pt 1): 293-301. |
| 7 | NITSCHE M A, GRUNDEY J, LIEBETANZ D, et al. Catecholaminergic consolidation of motor cortical neuroplasticity in humans[J]. Cereb Cortex, 2004, 14(11): 1240-1245. |
| 8 | HILL A T, ROGASCH N C, FITZGERALD P B, et al. TMS-EEG: a window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions[J]. Neurosci Biobehav Rev, 2016, 64: 175-184. |
| 9 | NITSCHE M A, SEEBER A, FROMMANN K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex[J]. J Physiol, 2005, 568(Pt 1): 291-303. |
| 10 | LIEBETANZ D, NITSCHE M A, TERGAU F, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability[J]. Brain, 2002, 125(Pt 10): 2238-2247. |
| 11 | ANASTASSIOU C A, PERIN R, MARKRAM H, et al. Ephaptic coupling of cortical neurons[J]. Nat Neurosci, 2011, 14(2): 217-223. |
| 12 | BRUNONI A R, NITSCHE M A, BOLOGNINI N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions[J]. Brain Stimul, 2012, 5(3): 175-195. |
| 13 | BEDLACK R S Jr, WEI M, LOEW L M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth[J]. Neuron, 1992, 9(3): 393-403. |
| 14 | RAHMAN A, REATO D, ARLOTTI M, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects[J]. J Physiol, 2013, 591(10): 2563-2578. |
| 15 | MCCAIG C D, RAJNICEK A M, SONG B, et al. Controlling cell behavior electrically: current views and future potential[J]. Physiol Rev, 2005, 85(3): 943-978. |
| 16 | MYCIELSKA M E, DJAMGOZ M B A. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease[J]. J Cell Sci, 2004, 117(Pt 9): 1631-1639. |
| 17 | ESHRA A, SCHMIDT H, EILERS J, et al. Calcium dependence of neurotransmitter release at a high fidelity synapse[J]. Elife, 2021, 10: e70408. |
| 18 | CAMBIAGHI M, BUFFELLI M, MASIN L, et al. Transcranial direct current stimulation of the mouse prefrontal cortex modulates serotonergic neural activity of the dorsal raphe nucleus[J]. Brain Stimul, 2020, 13(3): 548-550. |
| 19 | BACHTIAR V, JOHNSTONE A, BERRINGTON A, et al. Modulating regional motor cortical excitability with noninvasive brain stimulation results in neurochemical changes in bilateral motor cortices[J]. J Neurosci, 2018, 38(33): 7327-7336. |
| 20 | ANTONENKO D, THIELSCHER A, SATURNINO G B, et al. Towards precise brain stimulation: is electric field simulation related to neuromodulation? [J]. Brain Stimul, 2019, 12(5): 1159-1168. |
| 21 | ANTONENKO D, SCHUBERT F, BOHM F, et al. tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults[J]. J Neurosci, 2017, 37(15): 4065-4073. |
| 22 | LENGU K, RYAN S, PELTIER S J, et al. Effects of high definition-transcranial direct current stimulation on local GABA and glutamate levels among older adults with and without mild cognitive impairment: an exploratory study[J]. J Alzheimers Dis, 2021, 84(3): 1091-1102. |
| 23 | ZHAO X J, DING J, PAN H J, et al. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats[J]. J Physiol, 2020, 598(17): 3727-3745. |
| 24 | HEIMRATH K, BRECHMANN A, BLOBEL-LÜER R, et al. Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study[J]. Sci Rep, 2020, 10(1): 20111. |
| 25 | MAGEE J C, GRIENBERGER C. Synaptic plasticity forms and functions[J]. Annu Rev Neurosci, 2020, 43: 95-117. |
| 26 | NICOLL R A. A brief history of long-term potentiation[J]. Neuron, 2017, 93(2): 281-290. |
| 27 | RANIERI F, PODDA M V, RICCARDI E, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation[J]. J Neurophysiol, 2012, 107(7): 1868-1880. |
| 28 | FRASE L, MERTENS L, KRAHL A, et al. Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex[J]. Transl Psychiatry, 2021, 11(1): 17. |
| 29 | FRITSCH B, REIS J, MARTINOWICH K, et al. Direct Current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204. |
| 30 | YU T H, WU Y J, CHIEN, et al. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor[J]. Neuropharmacology, 2019, 144: 358-367. |
| 31 | PARK H, POPESCU A, POO M M. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP[J]. Neuron, 2014, 84(5): 1009-1022. |
| 32 | KRONBERG G, RAHMAN A, SHARMA M, et al. Direct Current stimulation boosts hebbian plasticity in vitro[J]. Brain Stimul, 2020, 13(2): 287-301. |
| 33 | FOX K, STRYKER M. Integrating hebbian and homeostatic plasticity: introduction[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1715): 20160413. |
| 34 | LI J, PARK E, ZHONG L R, et al. Homeostatic synaptic plasticity as a metaplasticity mechanism: a molecular and cellular perspective[J]. Curr Opin Neurobiol, 2019, 54: 44-53. |
| 35 | ABRAHAM W C, BEAR M F. Metaplasticity: the plasticity of synaptic plasticity[J]. Trends Neurosci, 1996, 19(4): 126-130. |
| 36 | COOPER L N, BEAR M F. The BCM theory of synapse modification at 30: interaction of theory with experiment[J]. Nat Rev Neurosci, 2012, 13(11): 798-810. |
| 37 | CARVALHO S, BOGGIO P S, GONÇALVES Ó F, et al. Transcranial direct current stimulation based metaplasticity protocols in working memory[J]. Brain Stimul, 2015, 8(2): 289-294. |
| 38 | HURLEY R, MACHADO L. Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? [J]. Neurosci Biobehav Rev, 2017, 83: 155-159. |
| 39 | COSENTINO G, FIERRO B, PALADINO P, et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex[J]. Eur J Neurosci, 2012, 35(1): 119-124. |
| 40 | BOCCI T, CALEO M, TOGNAZZI S, et al. Evidence for metaplasticity in the human visual cortex[J]. J Neural Transm (Vienna), 2014, 121(3): 221-231. |
| 41 | VINES B W, CERRUTI C, SCHLAUG G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation[J]. BMC Neurosci, 2008, 9: 103. |
| 42 | ANTAL A, POLANIA R, SCHMIDT-SAMOA C, et al. Transcranial direct current stimulation over the primary motor cortex during fMRI[J]. Neuroimage, 2011, 55(2): 590-596. |
| 43 | STAGG C J, BEST J G, STEPHENSON M C, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation[J]. J Neurosci, 2009, 29(16): 5202-5206. |
| 44 | MARSHALL L, MÖLLE M, HALLSCHMID M, et al. Transcranial direct current stimulation during sleep improves declarative memory[J]. J Neurosci, 2004, 24(44): 9985-9992. |
| 45 | ARIF Y, SPOONER R K, HEINRICHS-GRAHAM E, et al. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence[J]. J Physiol, 2021, 599(24): 5451-5463. |
| 46 | ARIF Y, SPOONER R K, WIESMAN A I, et al. Prefrontal multielectrode transcranial direct current stimulation modulates performance and neural activity serving visuospatial processing[J]. Cereb Cortex, 2020, 30(9): 4847-4857. |
| 47 | SPOONER R K, EASTMAN J A, REZICH M T, et al. High-definition transcranial direct current stimulation dissociates Fronto-visual Theta lateralization during visual selective attention[J]. J Physiol, 2020, 598(5): 987-998. |
| 48 | RUTTORF M, KRISTENSEN S, SCHAD L R, et al. Transcranial direct current stimulation alters functional network structure in humans: a graph theoretical analysis[J]. IEEE Trans Med Imaging, 2019, 38(12): 2829-2837. |
| 49 | LEAVER A M, GONZALEZ S, VASAVADA M, et al. Modulation of brain networks during MR-compatible transcranial direct current stimulation[J]. Neuroimage, 2022, 250: 118874. |
| 50 | GUO D L, LI J Y, ZHANG Y, et al. Transcranial direct current stimulation reconstructs diminished thalamocortical connectivity during prolonged resting wakefulness: a resting-state fMRI pilot study[J]. Brain Imaging Behav, 2020, 14(1): 278-288. |
| 51 | CHAN M M, HAN Y M. The effect of transcranial direct current stimulation in changing resting-state functional connectivity in patients with neurological disorders: a systematic review[J]. J Cent Nerv Syst Dis, 2020, 12: 1179573520976832. |
| 52 | KEESER D, MEINDL T, BOR J, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI[J]. J Neurosci, 2011, 31(43): 15284-15293. |
| 53 | PEÑA-GÓMEZ C, SALA-LONCH R, JUNQUÉ C, et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI[J]. Brain Stimul, 2012, 5(3): 252-263. |
| 54 | YAQUB M A, HONG K S, ZAFAR A, et al. Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals[J]. Int J Neural Syst, 2022, 32(1): 2150050. |
| 55 | LIU A L, VÖRÖSLAKOS M, KRONBERG G, et al. Immediate neurophysiological effects of transcranial electrical stimulation[J]. Nat Commun, 2018, 9(1): 5092. |
| 56 | BERGMANN T O, KARABANOV A, HARTWIGSEN G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives[J]. Neuroimage, 2016, 140: 4-19. |
| 57 | HORVATH J C, CARTER O, FORTE J D. Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be)[J]. Front Syst Neurosci, 2014, 8: 2. |
| [1] | WANG Gaoming, CUI Ran, LI Yanjing, LIU Yingbin. Study on the mechanism of KRAS R68G secondary mutation-induced resistance to KRASG12D-targeted inhibitor MRTX1133 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(6): 705-716. |
| [2] | YU Kai, SHUAI Zhewei, HUANG Hongjun, LUO Yan. Research progress on the role and mechanisms of microglia in inflammatory diseases of central nervous system [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(5): 630-638. |
| [3] | LIU Jingyi, XU Hongyuan, DAI Qinggang, JIANG Lingyong. Progress in the regulatory mechanisms of mandibular condylar development and deformity [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(8): 951-958. |
| [4] | SONG Yifan, JIANG Linhao, YANG Qianzi, LUO Yan. Research progress in the central nervous system mechanism of dexmedetomidine [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(5): 626-634. |
| [5] | ZHOU Weijun, LIU Sidi, CAI Ruijie, LIU Hongchao, WANG Meijian, WU Hao, LIU Huihui, WANG Zhaoyan. Role of astrocytes in the repair of auditory synapses in the cochlear nucleus after noise damage [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 454-461. |
| [6] | HE Shan, LÜ Qinyu, YI Zhenghui. Research progress in executive dysfunction among adolescents with non-suicidal self-injury [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(4): 518-524. |
| [7] | FAN Qiang, WU Guangbo, ZHAO Jinbo, ZHENG Lei, LUO Meng. Research progress in pathophysiological and molecular mechanism changes during decompensated phase of portal hypertension in liver cirrhosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 379-384. |
| [8] | BAI Wenhui, SHEN Shukun, WU Yingli. Research progress in the anti-cancer activity and related mechanisms of arenobufagin [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 385-392. |
| [9] | HU Canfang, ZHONG Chuanyu, CAO Li. Research progress of neuromodulation in the treatment of Parkinson's disease [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 258-263. |
| [10] | LI Ying, TAN Yangxia, YIN Hongxin, JIANG Yanling, CHEN Li, MENG Guoyu. Research progress in the pathogenesis and prognosis of ZNF384 fusion subtype acute leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 631-640. |
| [11] | SHA Pan, ZHAO Xuewen, ZHU Haotian, GAO Chongzhou, LIU Shen. Research progress in the mechanism and intervention of tendon adhesion [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1116-1121. |
| [12] | ZHANG Xiuqi, SHEN Baiyong. Advances in cytological mechanism of neural invasion in pancreatic ductal adenocarcinoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 833-838. |
| [13] | Yanyan LIN, Yan XU, Hui LI. Progress in research on the mechanism of drug resistance to conventional chemotherapeutic drugs in children with acute lymphoblastic leukemia [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2022, 42(2): 211-217. |
| [14] | XIE Yuting, XIONG Ping. Research advances in biomedical applications of single-atom catalysts [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(12): 1751-1756. |
| [15] | HU Chanchan, FAN Yi, XU Yuan, HU Zhijian, ZENG Yiming. Lipid metabolism and lung cancer: emerging roles in occurrence, progression, diagnosis and treatment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(12): 1766-1771. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||