Journal of Shanghai Jiao Tong University (Medical Science) ›› 2023, Vol. 43 ›› Issue (9): 1162-1168.doi: 10.3969/j.issn.1674-8115.2023.09.010
• Clinical research • Previous Articles
LIU Qiming(), LU Qifan, CHAI Yezi, JIANG Meng(), PU Jun()
Received:
2023-03-23
Accepted:
2023-08-04
Online:
2023-09-28
Published:
2023-09-28
Contact:
JIANG Meng,PU Jun
E-mail:090503liu@sjtu.edu.cn;jiangmeng0919@163.com;pujun310@hotmail.com
Supported by:
CLC Number:
LIU Qiming, LU Qifan, CHAI Yezi, JIANG Meng, PU Jun. Radiomics-based left ventricular ejection fraction prediction: a feasibility study[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1162-1168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2023.09.010
Indicator | Total (n=200) | HC group (n=100) | LVH group (n=100) | P value |
---|---|---|---|---|
Demographic information | ||||
Age/year | 53 (36, 62) | 53 (36, 62) | 53 (36, 63) | 0.562 |
Male/n(%) | 143 (71.5) | 71 (71.0) | 72 (72.0) | 0.876 |
Weight/kg | 72 (63, 80) | 70±14 | 75 (65, 81) | 0.014 |
Height/cm | 170 (163, 175) | 169±10 | 169±8 | 0.793 |
BMI/(kg·m-2) | 24.7 (22.3, 27.1) | 24.2±3.5 | 26.0±4.0 | 0.000 |
BSA/m2 | 1.80±0.22 | 1.77±0.22 | 1.84 (1.70, 1.94) | 0.051 |
CMR parameter | ||||
LVEF/% | 65.1 (59.1, 70.2) | 65.3±7.0 | 65.3 (55.2, 71.0) | 0.336 |
LVEDV/mL | 127.3 (107.1, 158.2) | 125.7±34.7 | 134.8 (117.0, 167.8) | 0.000 |
LVEDV/BSA/(mL·m-2) | 101.7 (80.1, 135.5) | 70.2±14.2 | 75.9 (65.2, 91.8) | 0.000 |
LVEDM/g | 72.2 (62.7, 83.7) | 83.7±24.0 | 134.1 (105.5, 175.6) | 0.000 |
LVEDM/BSA/(g·m-2) | 55.5 (46.7, 71.9) | 46.6±9.6 | 72.0 (59.5, 89.2) | 0.000 |
Tab 1 Comparison of clinical data and CMR-derived parameters between the LVH group and HC group
Indicator | Total (n=200) | HC group (n=100) | LVH group (n=100) | P value |
---|---|---|---|---|
Demographic information | ||||
Age/year | 53 (36, 62) | 53 (36, 62) | 53 (36, 63) | 0.562 |
Male/n(%) | 143 (71.5) | 71 (71.0) | 72 (72.0) | 0.876 |
Weight/kg | 72 (63, 80) | 70±14 | 75 (65, 81) | 0.014 |
Height/cm | 170 (163, 175) | 169±10 | 169±8 | 0.793 |
BMI/(kg·m-2) | 24.7 (22.3, 27.1) | 24.2±3.5 | 26.0±4.0 | 0.000 |
BSA/m2 | 1.80±0.22 | 1.77±0.22 | 1.84 (1.70, 1.94) | 0.051 |
CMR parameter | ||||
LVEF/% | 65.1 (59.1, 70.2) | 65.3±7.0 | 65.3 (55.2, 71.0) | 0.336 |
LVEDV/mL | 127.3 (107.1, 158.2) | 125.7±34.7 | 134.8 (117.0, 167.8) | 0.000 |
LVEDV/BSA/(mL·m-2) | 101.7 (80.1, 135.5) | 70.2±14.2 | 75.9 (65.2, 91.8) | 0.000 |
LVEDM/g | 72.2 (62.7, 83.7) | 83.7±24.0 | 134.1 (105.5, 175.6) | 0.000 |
LVEDM/BSA/(g·m-2) | 55.5 (46.7, 71.9) | 46.6±9.6 | 72.0 (59.5, 89.2) | 0.000 |
Model | MAE | P value① |
---|---|---|
LR | 0.075±0.000 | 0.000 |
GB | 0.072±0.000 | 0.000 |
RF | 0.066±0.002 | - |
Tab 2 Comparison of LVEF prediction performance based on 7 radiomic features with different models
Model | MAE | P value① |
---|---|---|
LR | 0.075±0.000 | 0.000 |
GB | 0.072±0.000 | 0.000 |
RF | 0.066±0.002 | - |
Feature group① | MAE | P value② |
---|---|---|
Basic information③ | 0.071±0.002 | 0.000 |
Radiomics | 0.066±0.002 | 0.000 |
CMR④ | 0.060±0.001 | 0.001 |
CMR+radiomics | 0.056±0.001 | NA |
Tab 3 LVEF prediction performance based on clinical and radiomic information
Feature group① | MAE | P value② |
---|---|---|
Basic information③ | 0.071±0.002 | 0.000 |
Radiomics | 0.066±0.002 | 0.000 |
CMR④ | 0.060±0.001 | 0.001 |
CMR+radiomics | 0.056±0.001 | NA |
1 | HUYNH K. Heart failure: improvement of LVEF in patients with HF is linked to better prognosis[J]. Nat Rev Cardiol, 2016, 13(9): 505. |
2 | LEWEY J, LEVINE L D, ELOVITZ M A, et al. Importance of early diagnosis in peripartum cardiomyopathy[J]. Hypertension, 2020, 75(1): 91-97. |
3 | Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2015, 28(1): 1-39.e14. |
4 | OMMEN S R, MITAL S, BURKE M A, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. Circulation, 2020, 142(25): e533-e557. |
5 | LAVIE C J, HARMON K G. Routine ECG screening of young athletes[J]. J Am Coll Cardiol, 2016, 68(7): 712-714. |
6 | SHIGA T, WAJIMA Z, INOUE T, et al. Survey of observer variation in transesophageal echocardiography: comparison of anesthesiology and cardiology literature[J]. J Cardiothorac Vasc Anesth, 2003, 17(4): 430-442. |
7 | IBANEZ B, ALETRAS A H, ARAI A E, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials[J]. J Am Coll Cardiol, 2019, 74(2): 238-256. |
8 | KWAN A C, POURMORTEZA A, STUTMAN D, et al. Next-generation hardware advances in CT: cardiac applications[J]. Radiology, 2021, 298(1): 3-17. |
9 | YU X, YAO X X, WU B F, et al. Using deep learning method to identify left ventricular hypertrophy on echocardiography[J].Int J Cardiovasc Imaging, 2022, 38(4): 759-769. |
10 | SALIBA L J, MAFFETT S. Hypertensive heart disease and obesity: a review[J]. Heart Fail Clin, 2019, 15(4): 509-517. |
11 | GEORGIOPOULOS G, FIGLIOZZI S, PATERAS K, et al. Comparison of demographic, clinical, biochemical, and imaging findings in hypertrophic cardiomyopathy prognosis: a network meta-analysis[J]. JACC Heart Fail, 2023, 11(1): 30-41. |
12 | FUNADA A, KANZAKI H, NOGUCHI T, et al. Prognostic significance of late gadolinium enhancement quantification in cardiac magnetic resonance imaging of hypertrophic cardiomyopathy with systolic dysfunction[J]. Heart Vessels, 2016, 31(5): 758-770. |
13 | LYU Q, SHAN H M, XIE Y B, et al. Cine cardiac MRI motion artifact reduction using a recurrent neural network[J]. IEEE Trans Med Imaging, 2021, 40(8): 2170-2181. |
14 | LARKMAN D J, HERLIHY A H, COUTTS G A, et al. Elimination of magnetic field foldover artifacts in MR images[J]. J Magn Reson Imaging, 2000, 12(5): 795-797. |
15 | RAJIAH P, KAY F, BOLEN M, et al. Cardiac magnetic resonance in patients with cardiac implantable electronic devices: challenges and solutions[J]. J Thorac Imaging, 2020, 35(1): W1-W17. |
16 | FERREIRA P F, GATEHOUSE P D, MOHIADDIN R H, et al. Cardiovascular magnetic resonance artefacts[J]. J Cardiovasc Magn Reson, 2013, 15(1): 41. |
17 | GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. |
18 | LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. |
19 | KELLER H, WANGER K C, GOEPFRICH M, et al. Morphological quantification and differentiation of left ventricular hypertrophy in hypertrophic cardiomyopathy and hypertensive heart disease. A two dimensional echocardiographic study[J]. Eur Heart J, 1990, 11(1): 65-74. |
20 | ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. |
21 | VAN GRIETHUYSEN J J M, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107. |
22 | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[EB/OL]. (2018-06-05) [2023-03-23]. https://arxiv.org/abs/1201.0490. |
23 | BUSTIN A, FUIN N, BOTNAR R M, et al. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction[J]. Front Cardiovasc Med, 2020, 7: 17. |
24 | VARRIANO G, GUERRIERO P, SANTONE A, et al. Explainability of radiomics through formal methods[J]. Comput Methods Programs Biomed, 2022, 220: 106824. |
25 | FAHMY A S, ROWIN E J, ARAFATI A, et al. Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy[J]. J Cardiovasc Magn Reson, 2022, 24(1): 40. |
26 | RAISI-ESTABRAGH Z, JAGGI A, GKONTRA P, et al. Cardiac magnetic resonance radiomics reveal differential impact of sex, age, and vascular risk factors on cardiac structure and myocardial tissue[J]. Front Cardiovasc Med, 2021, 8: 763361. |
27 | WANG S, PATEL H, MILLER T, et al. AI based CMR assessment of biventricular function[J]. JACC Cardiovasc Imaging, 2022, 15(3): 413-427. |
28 | ZHENG X Y, YAO Z, HUANG Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11(1): 1236. |
29 | BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Trans Med Imaging, 2018, 37(11): 2514-2525. |
30 | CAMPELLO V M, MARTÍN-ISLA C, IZQUIERDO C, et al. Minimising multi-centre radiomics variability through image normalisation: a pilot study[J]. Sci Rep, 2022, 12(1): 12532. |
31 | PIANTADOSI G, SANSONE M, FUSCO R, et al. Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks[J]. Artif Intell Med, 2020, 103: 101781. |
[1] | MA Ben, ZHAO Cheng, SHU Yijun, DONG Ping. Application progress of CT radiomics in gastrointestinal stromal tumor [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(7): 923-930. |
[2] | CHENG Ran, HU Jiajia, LI Biao. Advances in the application of 18F-FDG PET/CT radiomics for diagnosis, treatment and prognosis prediction of lymphoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 781-787. |
[3] | Jun-lin HE, Qing LU, Xin XU, Shu-dong HU. Value of CT radiomic features in preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1233-1239. |
[4] | Pei-kun HU, Jie HE, Lian-ming WU, Heng GE, Jian-rong XU, Jun PU. Effect of microvascular obstruction on left ventricle function and prognosis in patients with ST-segment elevation myocardial infarction [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 173-179. |
[5] | Ze-hao FENG, Ye-zi CHAI, Xuan SU, Bao-hang-xing SUN, Qi-ming LIU, Meng JIANG, Jun PU. Association between body mass index and myocardial involvements in patients with systemic lupus erythematosus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 180-186. |
[6] | Jian-xun DONG, Lai WEI, Jie HE, Ling-cong KONG, Heng GE, Jun PU. Progress of cardiac magnetic resonance in assessment of left ventricular mechanical dyssynchrony [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1698-1702. |
[7] | Ya-jie GAO, Wen-kun MA, Cheng-jie GAO, Yi ZHOU, Jing-wei PAN. Exploration of the predictive value of myocardial strain on ventricular remodeling after acute ST-segment elevation myocardial infarction [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1478-1484. |
[8] | FENG Ze-hao1*, ZHANG Qing1*, CHAI Ye-zi1, SU Xuan1, SUN Bao-hang-xing1, LIU Qi-ming1, YAN Fu-hua2, JIANG Meng1#, PU Jun1#. Evaluation of effect of smoking on myocardial injury and prognosis in patients with acute ST-segment elevation myocardial infarction [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(5): 573-582. |
[9] | CHEN Xiao-mei1, CHEN Zi-jin2, MA Xiao-bo2, ZHANG Chun-li2, QIAN Ying2, YU Hai-jin2, CHEN Xiao-nong2. Progression of left ventricular hypertrophy in maintenance hemodialysis patients and analysis of risk factors [J]. , 2018, 38(5): 505-. |
[10] | LIU Miao*, SU Xin-yu*, PANG Hui-hua, YAN Hao, LI Zhen-yuan, YU Zan-zhe, ZHANG He, YUAN Jiang-zi, NI Zhao-hui, FANG Wei. Effect of fat content on left ventricular hypertrophy in peritoneal dialysis patients [J]. , 2018, 38(2): 167-. |
[11] | WANG Wei, ZHAO Hang, GE Heng, DING Song, SHEN Xue-dong, PU Jun. Value of two-dimensional speckle-tracking echocardiography in accessing myocardial viability and predicting left ventricular remodeling after acute myocardial infarction [J]. , 2018, 38(12): 1447-. |
[12] | MENG Chao, JIN Xian, WANG Xiao-ling, XIA Li, CAI Jun, FANG Ning-yuan. Effects of losartan potassium on myocardial mitochondrial proteins in spontaneously hypertensive rats with left ventricular hypertrophy [J]. , 2016, 36(10): 1425-. |
[13] | HU Jun, ZHU Fu, XIE Jun, et al. Cardiac structure and function in senile patients with essential hypertension [J]. , 2012, 32(1): 69-. |
[14] | WU Wei-hua, HUANG Yan, LU Jing, et al. Evaluation of left ventricular systolic dysfunction by mitral annular displacement in patients with cardiac hypertrophy and remodeling [J]. , 2011, 31(3): 313-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||