Journal of Shanghai Jiao Tong University (Medical Science) ›› 2024, Vol. 44 ›› Issue (2): 169-182.doi: 10.3969/j.issn.1674-8115.2024.02.003
• Basic research • Previous Articles
SI Chunying1,2(), WANG Jianru2, LI Xiaohui2(), WANG Yongxia1,2, GUAN Huaimin2
Received:
2023-05-19
Accepted:
2023-12-11
Online:
2024-02-28
Published:
2024-03-25
Contact:
LI Xiaohui
E-mail:chunyingsi1987@163.com;478103511@qq.com
Supported by:
CLC Number:
SI Chunying, WANG Jianru, LI Xiaohui, WANG Yongxia, GUAN Huaimin. Study on intercellular communication and key genes of smooth muscle cells in human coronary atherosclerosis based on single cell sequencing technology[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 169-182.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2024.02.003
Primer | Sequence (5'→3') | Length/bp |
---|---|---|
ITGB2-F | ACCTCATGGATCTCTCCTACTC | 274 |
ITGB2-R | CCGACCTCTGTCTGAAACTG | |
PTPRC-F | AGTCTCTACGCAAAGCACGG | 254 |
PTPRC-R | AGCACTATTGGTAGGCTCCG | |
CCL2-F | GCTGACCCCAAGAAGGAATG | 183 |
CCL2-R | TGAGGTGGTTGTGGAAAAGG | |
DCN-F | AATCCCTTATGACCCTGACA | 275 |
DCN-R | TTTCCAACTTCACGAGAGGT | |
IGF1-F | GATGCTCTTCAGTTCGTGTG | 259 |
IGF1-R | GCTTCGTTTTCTTGTTTGTC | |
GAPDH-F | CCTTCCGTGTTCCTAC | 152 |
GAPDH-R | GACAACCTGGTCCTCA |
Tab 1 Primer sequence for RT-PCR
Primer | Sequence (5'→3') | Length/bp |
---|---|---|
ITGB2-F | ACCTCATGGATCTCTCCTACTC | 274 |
ITGB2-R | CCGACCTCTGTCTGAAACTG | |
PTPRC-F | AGTCTCTACGCAAAGCACGG | 254 |
PTPRC-R | AGCACTATTGGTAGGCTCCG | |
CCL2-F | GCTGACCCCAAGAAGGAATG | 183 |
CCL2-R | TGAGGTGGTTGTGGAAAAGG | |
DCN-F | AATCCCTTATGACCCTGACA | 275 |
DCN-R | TTTCCAACTTCACGAGAGGT | |
IGF1-F | GATGCTCTTCAGTTCGTGTG | 259 |
IGF1-R | GCTTCGTTTTCTTGTTTGTC | |
GAPDH-F | CCTTCCGTGTTCCTAC | 152 |
GAPDH-R | GACAACCTGGTCCTCA |
Source | Target | Ligand | Receptor | Probability | P value | Interaction name | Pathway | Annotation | Evidence (PMID) |
---|---|---|---|---|---|---|---|---|---|
Chondrocyte | Endothelial cell | CCL2 | ACKR1 | 0.053 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Macrophage | Endothelial cell | CCL2 | ACKR1 | 0.042 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Monocyte | Endothelial cell | CCL2 | ACKR1 | 0.047 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Neuron | Endothelial cell | CCL2 | ACKR1 | 0.060 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Smooth muscle cell | Endothelial cell | CCL2 | ACKR1 | 0.244 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Tissue stem cell | Endothelial cell | CCL2 | ACKR1 | 0.021 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Macrophage | Macrophage | C3 | ITGAM_ITGB2 | 0.004 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Smooth muscle cell | Macrophage | C3 | ITGAM_ITGB2 | 0.040 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Macrophage | Monocyte | C3 | ITGAM_ITGB2 | 0.005 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Smooth muscle cell | Monocyte | C3 | ITGAM_ITGB2 | 0.046 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Macrophage | Macrophage | C3 | ITGAX_ITGB2 | 0.004 | 0.000 | C3-(ITGAX+ITGB2) | Complement | Secreted signaling | 16234578 |
Smooth muscle cell | Macrophage | C3 | ITGAX_ITGB2 | 0.040 | 0.000 | C3-(ITGAX+ITGB2) | Complement | Secreted signaling | 16234578 |
Tab 2 Hub genes-mediated cell signaling pathway
Source | Target | Ligand | Receptor | Probability | P value | Interaction name | Pathway | Annotation | Evidence (PMID) |
---|---|---|---|---|---|---|---|---|---|
Chondrocyte | Endothelial cell | CCL2 | ACKR1 | 0.053 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Macrophage | Endothelial cell | CCL2 | ACKR1 | 0.042 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Monocyte | Endothelial cell | CCL2 | ACKR1 | 0.047 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Neuron | Endothelial cell | CCL2 | ACKR1 | 0.060 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Smooth muscle cell | Endothelial cell | CCL2 | ACKR1 | 0.244 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Tissue stem cell | Endothelial cell | CCL2 | ACKR1 | 0.021 | 0.000 | CCL2-ACKR1 | CCL | Secreted signaling | 26740381 |
Macrophage | Macrophage | C3 | ITGAM_ITGB2 | 0.004 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Smooth muscle cell | Macrophage | C3 | ITGAM_ITGB2 | 0.040 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Macrophage | Monocyte | C3 | ITGAM_ITGB2 | 0.005 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Smooth muscle cell | Monocyte | C3 | ITGAM_ITGB2 | 0.046 | 0.000 | C3-(ITGAM+ITGB2) | Complement | Secreted signaling | 16234578 |
Macrophage | Macrophage | C3 | ITGAX_ITGB2 | 0.004 | 0.000 | C3-(ITGAX+ITGB2) | Complement | Secreted signaling | 16234578 |
Smooth muscle cell | Macrophage | C3 | ITGAX_ITGB2 | 0.040 | 0.000 | C3-(ITGAX+ITGB2) | Complement | Secreted signaling | 16234578 |
Group | ITGB2 | PTPRC | CCL2 | DCN | IGF1 |
---|---|---|---|---|---|
Control | 1.04±0.34 | 1.00±0.06 | 1.01±0.19 | 1.01±0.15 | 1.00±0.06 |
AS | 0.45±0.11① | 0.21±0.01② | 2.19±0.57③ | 1.57±0.11④ | 4.24±1.14⑤ |
Tab 3 mRNA expression levels of hub genes in each group of mice (x±s, n=3)
Group | ITGB2 | PTPRC | CCL2 | DCN | IGF1 |
---|---|---|---|---|---|
Control | 1.04±0.34 | 1.00±0.06 | 1.01±0.19 | 1.01±0.15 | 1.00±0.06 |
AS | 0.45±0.11① | 0.21±0.01② | 2.19±0.57③ | 1.57±0.11④ | 4.24±1.14⑤ |
1 | 郝俊海, 林展翼. 冠状动脉粥样硬化相关生物力学因素的研究进展[J]. 中国动脉硬化杂志, 2020, 28(11): 1009-1012. |
HAO J H, LIN Z Y. Research progress of biomechanical factors related to coronary atherosclerosis[J]. Chinese Journal of Arteriosclerosis, 2020, 28(11): 1009-1012. | |
2 | HOSEN M R, GOODY P R, ZIETZER A, et al. MicroRNAs as master regulators of atherosclerosis: from pathogenesis to novel therapeutic options[J]. Antioxid Redox Signal, 2020, 33(9): 621-644. |
3 | D'ASCENZO F, AGOSTONI P, ABBATE A, et al. Atherosclerotic coronary plaque regression and the risk of adverse cardiovascular events: a meta-regression of randomized clinical trials[J]. Atherosclerosis, 2013, 226(1): 178-185. |
4 | BERUMEN SÁNCHEZ G, BUNN K E, PUA H H, et al. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease[J]. Cell Commun Signal, 2021, 19(1): 104. |
5 | CHARLA E, MERCER J, MAFFIA P, et al. Extracellular vesicle signalling in atherosclerosis[J]. Cell Signal, 2020, 75: 109751. |
6 | ZHANG L Z, LEI S. Changes of junctions of endothelial cells in coronary sclerosis: a review[J]. Chronic Dis Transl Med, 2016, 2(1): 22-26. |
7 | WEN D, WANG X, CHEN R, et al. Single-cell RNA sequencing reveals the pathogenic relevance of intracranial atherosclerosis in blood blister-like aneurysms[J]. Front Immunol, 2022, 13: 927125. |
8 | JIN S, RAMOS R. Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data[J]. Biochem Soc Trans, 2022, 50(1): 297-308. |
9 | POTTER S S. Single-cell RNA sequencing for the study of development, physiology and disease[J]. Nat Rev Nephrol, 2018, 14(8): 479-492. |
10 | COCHAIN C, VAFADARNEJAD E, ARAMPATZI P, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J]. Circ Res, 2018, 122(12): 1661-1674. |
11 | WIRKA R C, WAGH D, PAIK D T, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J]. Nat Med, 2019, 25(8): 1280-1289. |
12 | TILLIE R J H A, VAN KUIJK K, SLUIMER J C. Fibroblasts in atherosclerosis: heterogeneous and plastic participants[J]. Curr Opin Lipidol, 2020, 31(5): 273-278. |
13 | 王建茹, 李晓辉. 基于单细胞RNA测序技术筛选颈动脉粥样硬化中巨噬细胞特征基因的研究[J]. 医学研究生学报, 2022, 35(10):1014-1021. |
WANG J R, LI X H. Screening of macrophage characteristic genes in carotid atherosclerosis by single-cell RNA sequencing[J]. Journal of Medical Graduate students, 2022, 35(10): 1014-1021. | |
14 | JIN S, GUERRERO-JUAREZ C F, ZHANG L, et al. Inference and analysis of cell-cell communication using CellChat[J]. Nat Commun, 2021, 12(1): 1088. |
15 | 王建茹, 朱明军, 王永霞, 等. 基于网络药理学和分子对接技术探讨芪参益气滴丸改善心肌缺血再灌注损伤的潜在分子机制[J]. 中医学报, 2021, 36(7): 1537-1544. |
WANG J R, ZHU M J, WANG Y X, et al. Study on the potential molecular mechanism of Qishenyiqi Dropping pills to improve myocardial ischemia reperfusion injury based on network pharmacology and molecular docking technique[J]. Journal of Traditional Chinese Medicine, 2021, 36(7): 1537-1544. | |
16 | 陈馨浓, 葛其卉, 赵一璇, 等. 四妙勇安汤对动脉粥样硬化巨噬细胞泡沫化的影响[J].中国中西医结合杂志, 2023, 43(6): 705-711. |
CHEN X N, GE Q H, ZHAO Y X, et al.Effect of Simiao Yongan Decoction on macrophage foam cell formation in atherosclerosis[J].Chinese Journal of Integrated Traditional and Western Medicine, 2023, 43(6): 705-711. | |
17 | XU H, NI Y Q, LIU Y S. Mechanisms of action of miRNAs and lncRNAs in extracellular vesicle in atherosclerosis[J]. Front Cardiovasc Med, 2021, 8: 733985. |
18 | RAMILOWSKI J A, GOLDBERG T, HARSHBARGER J, et al. A draft network of ligand-receptor-mediated multicellular signalling in human[J]. Nat Commun, 2015, 6: 7866. |
19 | EFREMOVA M, VENTO-TORMO M, TEICHMANN S A, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes[J]. Nat Protoc, 2020, 15(4): 1484-1506. |
20 | SHI X, GUO L W, SEEDIAL S M, et al. TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A[J]. Cell Death Dis, 2014, 5(7): e1317. |
21 | OSTRIKER A, HORITA H N, POCZOBUTT J, et al. Vascular smooth muscle cell-derived transforming growth factor-β promotes maturation of activated, neointima lesion-like macrophages[J]. Arterioscler Thromb Vasc Biol, 2014, 34(4): 877-886. |
22 | BADIMON L, STOREY R F, VILAHUR G. Update on lipids, inflammation and atherothrombosis[J]. Thromb Haemost, 2011, 105(Suppl 1): S34-S42. |
23 | MERCHED A, TOLLEFSON K, CHAN L. β2 integrins modulate the initiation and progression of atherosclerosis in low-density lipoprotein receptor knockout mice[J]. Cardiovasc Res, 2010, 85(4): 853-863. |
24 | KANG S W, KIM M S, KIM H S, et al. Celastrol attenuates adipokine resistin-associated matrix interaction and migration of vascular smooth muscle cells[J]. J Cell Biochem, 2013, 114(2): 398-408. |
25 | AL BARASHDI M A, ALI A, MCMULLIN M F, et al. Protein tyrosine phosphatase receptor type C (PTPRC or CD45)[J]. J Clin Pathol, 2021, 74(9): 548-552. |
26 | 王玉, 孙晓宇, 罗亚, 等. 冠状动脉粥样斑块内CD45表达水平与病灶结构变化的关系[J]. 中国动脉硬化杂志, 2019, 27(2): 114-119, 140. |
WANG Y, SUN X Y, LUO Y, et al. Relationship between CD45 expression level and lesion structure in coronary artery plaque[J]. Chinese Journal of Arteriosclerosis, 2019, 27(2): 114-119, 140. | |
27 | 胡永涛, 刘洪智. 冠心病患者外周血CD45、HMGB1水平与支架内再狭窄的相关性分析[J]. 中国循证心血管医学杂志, 2022, 14(5): 581-584. |
HU Y T, LIU H Z. Correlation analysis of peripheral blood CD45, HMGB1 and stent restenosis in patients with coronary heart disease[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2022, 14(5): 581-584. | |
28 | ZHU S, LIU M, BENNETT S, et al. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases[J]. J Cell Physiol, 2021, 236(10): 7211-7222. |
29 | OSONOI Y, MITA T, AZUMA K, et al. Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis[J]. Autophagy, 2018, 14(11): 1991-2006. |
30 | YU B, WONG M M, POTTER C M, et al. Vascular stem/progenitor cell migration induced by smooth muscle cell-derived chemokine (C-C motif) ligand 2 and chemokine (C-X-C motif) ligand 1 contributes to neointima formation[J]. Stem Cells, 2016, 34(9): 2368-2380. |
31 | SCHOBER A, ZERNECKE A, LIEHN E A, et al. Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets[J]. Circ Res, 2004, 95(11): 1125-1133. |
32 | KUNNAS T, SOLAKIVI T, MÄÄTTÄ K, et al. Decorin genotypes, serum glucose, heart rate, and cerebrovascular events: the Tampere adult population cardiovascular risk study[J]. Genet Test Mol Biomarkers, 2016, 20(8): 416-419. |
33 | AL HAJ ZEN A, CALIGIURI G, SAINZ J, et al. Decorin overexpression reduces atherosclerosis development in apolipoprotein E-deficient mice[J]. Atherosclerosis, 2006, 187(1): 31-39. |
34 | BURTON D G A, GILES P J, SHEERIN A N P, et al. Microarray analysis of senescent vascular smooth muscle cells: a link to atherosclerosis and vascular calcification[J]. Exp Gerontol, 2009, 44(10): 659-665. |
35 | FIERRO-MACÍAS A E, FLORIANO-SÁNCHEZ E, MENA-BURCIAGA V M, et al. Association between IGF system and PAPP-A in coronary atherosclerosis[J]. Arch Cardiol Mex, 2016, 86(2): 148-156. |
36 | CHONG H, WEI Z, NA M, et al. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis[J]. Atherosclerosis, 2020, 297: 136-145. |
37 | 涂少文, 陈云宪, 唐良秋. 趋化因子在动脉粥样硬化中的作用及研究进展[J]. 中国医学创新, 2022, 19(15): 175-179. |
TU S W, CHEN Y X, TANG L Q. The role and research progress of chemokines in atherosclerosis[J]. Chinese Medical Innovation, 2022, 19(15): 175-179. | |
38 | HERNÁNDEZ-AGUILERA A, FIBLA M, CABRÉ N, et al. Chemokine (C-C motif) ligand 2 and coronary artery disease: tissue expression of functional and atypical receptors[J]. Cytokine, 2020, 126: 154923. |
39 | SINGH S R, SUTCLIFFE A, KAUR D, et al. CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration[J]. Allergy, 2014, 69(9): 1189-1197. |
40 | GIRBL T, LENN T, PEREZ L, et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis[J]. Immunity, 2018, 49(6): 1062-1076.e6. |
41 | LIAO Z, JIN Y, CHU Y, et al. Single-cell transcriptome analysis reveals aberrant stromal cells and heterogeneous endothelial cells in alcohol-induced osteonecrosis of the femoral head[J]. Commun Biol, 2022, 5(1): 324. |
42 | SPEIDL W S, KASTL S P, HUBER K, et al. Complement in atherosclerosis: friend or foe?[J]. J Thromb Haemost, 2011, 9(3): 428-440. |
43 | 刘艾婷, 彭旷, 欧蕾宇, 等. 补体系统在动脉粥样硬化中的作用研究进展[J]. 中国动脉硬化杂志, 2021, 29(4): 363-368. |
LIU A T, PENG K, OU L Y, et al. Research progress on the role of complement system in atherosclerosis[J]. Chinese Journal of Arteriosclerosis, 2021, 29(4): 363-368. | |
44 | WAN J X, FUKUDA N, ENDO M, et al. Complement 3 is involved in changing the phenotype of human glomerular mesangial cells[J]. J Cell Physiol, 2007, 213(2): 495-501. |
45 | RUS H, CUDRICI C, NICULESCU F. The role of the complement system in innate immunity[J]. Immunol Res, 2005, 33(2): 103-112. |
46 | BUYANNEMEKH D, NHAM S U. Characterization of αX Ⅰ-domain binding to receptors for advanced glycation end products (RAGE)[J]. Mol Cells, 2017, 40(5): 355-362. |
47 | YAKUBENKO V P, BHATTACHARJEE A, PLUSKOTA E, et al. αMβ2 integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation[J]. Circ Res, 2011, 108(5): 544-554. |
48 | BAJTAY Z. Biologia futura: stories about the functions of β2-integrins in human phagocytes[J]. Biol Futur, 2021, 72(1): 7-13. |
49 | WANG M, GU M, LIU L, et al. Single-cell RNA sequencing (scRNA-seq) in cardiac tissue: applications and limitations[J]. Vasc Health Risk Manag, 2021, 17: 641-657. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||