Journal of Shanghai Jiao Tong University (Medical Science) >
Advances in the correlation between cytokine signal transduction inhibitors and rheumatoid arthritis
Received date: 2022-04-04
Accepted date: 2022-06-14
Online published: 2022-09-04
Supported by
National Key Research and Development Program of China(2018YFC1705203);Industry Special Project of National Administration of Traditional Chinese Medicine(20150700107);TCM Project from Administration of Traditional Chinese Medicine of Gansu Municipal Health Commission(GZKP-2021-12)
Rheumatoid arthritis (RA) is a chronic symmetrical disease with synovial inflammation, bone destruction and pannus formation. Inflammatory mediators are closely related to the pathogenesis of RA, and the severity of RA is significantly affected by the promotion and demotion of inflammatory mediator levels. In this review, we have reviewed the studies about the correlation between cytokine signaling inhibitory factors and RA in recent years. We have found that cytokine signaling inhibitory factors, as endogenous negative regulators, are involved in intra- and extra-cellular signal transduction, mediating T cell survival and differentiation, inducing transcription and activation of inflammatory factors, and playing a regulatory role in the activation of various immune responses invivovia blocking the phosphorylation of signal transducer and activator of transcription (STAT) and inhibiting the activity of Janus kinase (JAK). Therefore, as an anti-inflammatory mediator protein, cytokine signaling inhibitory factors are involved in inflammatory responses via various pathways, closely related to the occurrence and development of RA, and are expected to be a biomarker for the diagnosis and prognosis for RA. Meanwhile, we predict that the study of apoptosis, immune regulation, cartilage metabolism and autophagy related to cytokine signaling inhibitors may become a research hotspot for RA in the future. Further in-depth research on the correlation and mechanism of cytokine signaling inhibitory factors and RA may widen our vision for the treatment of RA.
Haitao LEI , Xuemei TIAN , Fangquan JIN . Advances in the correlation between cytokine signal transduction inhibitors and rheumatoid arthritis[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(7) : 945 -951 . DOI: 10.3969/j.issn.1674-8115.2022.07.015
1 | CRAMER A, GALV?O I, VENTURINI DE Sá N, et al. Role of suppressor of cytokine signaling 2 during the development and resolution of an experimental arthritis[J]. Cell Immunol, 2022, 372: 104476. |
2 | SANTOS M R G, QUEIROZ-JUNIOR C M, MADEIRA M F M, et al. Suppressors of cytokine signaling (SOCS) proteins in inflammatory bone disorders[J]. Bone, 2020, 140: 115538. |
3 | DAI L R, LI Z A, LIANG W L, et al. SOCS proteins and their roles in the development of glioblastoma[J]. Oncol Lett, 2022, 23(1): 5. |
4 | MALEMUD C J. Negative regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis[J]. Int J Mol Sci, 2017, 18(3): 484. |
5 | LINOSSI E M, CALLEJA D J, NICHOLSON S E. Understanding SOCS protein specificity[J]. Growth Factors, 2018, 36(3/4): 104-117. |
6 | KEEWAN E, MATLAWSKA-WASOWSKA K. The emerging role of suppressors of cytokine signaling (SOCS) in the development and progression of leukemia[J]. Cancers (Basel), 2021, 13(16): 4000. |
7 | HUANG S, LIU K, CHENG A, et al. SOCS proteins participate in the regulation of innateimmune response caused by viruses[J]. Front Immunol, 2020, 11: 558341. |
8 | USHIKI T, HUNTINGTON N D, GLASER S P, et al. Rapid inflammation in mice lacking both SOCS1 and SOCS3 in hematopoietic cells[J]. PLoS One, 2016, 11(9): e0162111. |
9 | SOBAH M L, LIONGUE C, WARD A C. SOCS proteins in immunity, inflammatory diseases, and immune-related cancer[J]. Front Med, 2021, 8: 727987. |
10 | EHRENTRAUT S, SCHNEIDER B, NAGEL S, et al. Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma[J]. Oncotarget, 2016, 7(23): 34201-34216. |
11 | GUITTARD G, DIOS-ESPONERA A, PALMER D C, et al. The Cish SH2 domain is essential for PLC-γ1 regulation in TCR stimulated CD8+T cells[J]. Sci Rep, 2018, 8(1): 5336. |
12 | PALMER D C, GUITTARD G C, FRANCO Z, et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance[J]. J Exp Med, 2015, 212(12): 2095-2113. |
13 | 孟梅, 岳正刚, 周瑞, 等. 靶向类风湿关节炎细胞因子与信号通路的治疗药物进展[J]. 中国药学杂志, 2021, 56(8): 620-625. |
13 | MENG M, YUE Z G, ZHOU R, et al. Progress in therapeutic drugs targeting rheumatoid arthritis cytokines and signaling pathways[J]. Chin Pharm J, 2021, 56(8): 620-625. |
14 | LA MANNA S, DE BENEDICTIS I, MARASCO D. Proteomimetics of natural regulators of JAK-STAT pathway: novel therapeutic perspectives[J]. Front Mol Biosci, 2021, 8: 792546. |
15 | LI T, WU S Y, LI S, et al. SOCS3 participates in cholinergic pathway regulation of synovitis in rheumatoid arthritis[J]. Connect Tissue Res, 2018, 59(3): 287-294. |
16 | 王芬, 赵彬元, 严兴科, 等. 热补针法对类风湿关节炎大鼠滑膜细胞JAK-STAT信号通路调节因子SOCS1、SOCS3表达的影响[J]. 中国中医药信息杂志, 2020, 27(6): 56-60. |
16 | WANG F, ZHAO B Y, YAN X K, et al. Effects of heat-reinforcing needling on expressions of cytokine signal suppressor SOCS1 and SOCS3 in JAK-STAT pathway of synovium cells in rheumatoid arthritis rats[J]. Tradit Chin Med Inf (Chinese), 2020, 27(6): 56-60. |
17 | 马俊福, 孟庆良, 苗喜云, 等. 转录因子Egr2/Egr3在类风湿关节炎寒证中的作用机制[J]. 世界科学技术-中医药现代化, 2021, 23(8): 2816-2822.MA J F, MENG Q L, MIAO X Y, et al. Mechanism of transcription factor Egr2/Egr3 in cold syndrome of rheumatoid arthritis[J]. Mod Tradit Chin Med (World Sci Technol), 2021, 23(8):2816-2822. |
18 | SONI B, SINGH S. Synthetic perturbations in IL6 biological circuit induces dynamica cellular response[J]. Molecules, 2021, 27(1): 124. |
19 | GAO Y, ZHAO H L, WANG P, et al. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases[J]. Scand J Immunol, 2018, 88(6): e12727. |
20 | MASOOD K I, IRFAN M, MASOOD Q, et al. Latent M. tuberculosis infection is associated with increased inflammatory cytokine and decreased suppressor of cytokine signalling (SOCS)-3 in the diabetic host[J]. Scand J Immunol, 2022, 95(4): e13134. |
21 | BAI X Y, LIU P, CHAI Y W, et al. Artesunate attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis by down-regulating Th17 cell responses in BALB/c mice[J]. Eur J Pharmacol, 2020, 874: 173020. |
22 | DONG X, ZHANG X, XU S, et al. SOCS-1 suppresses neuroinflammation in intracranial hemorrhage by downregulating the c-Fos/KLF4/IL-17A axis[J]. Eur J Neurosci, 2022. DOI: 10.1111/ejn.15615. |
23 | DUNCAN S A, DIXIT S, SAHU R, et al. Prolonged release and functionality of interleukin-10 encapsulated within PLA-PEG nanoparticles[J]. Nanomaterials (Basel), 2019, 9(8): 1074. |
24 | 张飘, 龙立书, 洪猛, 等. JAK-STAT信号通路Jak2、Stat3和Socs1基因在鸭肠炎病毒感染中各组织的表达变化[J]. 中国兽医学报, 2021, 41(7): 1335-1347. |
24 | ZHANG P, LONG L S, HONG M, et al. Changes of expression of Jak2, Stat3 and Socs1 genes in JAK-STAT signaling pathway in various tissues of duck infected with duck enteritis virus[J]. Chin J Vet Sci, 2021, 41(7): 1335-1347. |
25 | RUGANZU J B, ZHENG Q Z, WU X Y, et al. TREM2 overexpression rescues cognitive deficits in APP/PS1 transgenic mice by reducing neuroinflammation via the JAK/STAT/SOCS signaling pathway[J]. Exp Neurol, 2021, 336: 113506. |
26 | 张传英, 邵芙蓉, 蔡荣林, 等. 艾灸对类风湿性关节炎大鼠关节滑膜组织转录信号转导因子1、细胞因子信号负调控因子基因表达的影响[J]. 针刺研究, 2015, 40(3): 205-209. |
26 | ZHANG C Y, SHAO F R, CAI R L, et al. Effects of moxibustion on expression of STAT1, SOCS mRNA in synovium of rats with rheumation arthritis[J]. Acupunct Res, 2015, 40(3): 205-209. |
27 | WAIBOCI L W, AHMED C M, MUJTABA M G, et al. Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist[J]. J Immunol, 2007, 178(8): 5058-5068. |
28 | SCHINOCCA C, RIZZO C, FASANO S, et al. Role of the IL-23/IL-17 pathway in rheumatic diseases: an overview[J]. Front Immunol, 2021, 12: 637829. |
29 | 葛改, 杨智雅, 张祥宇, 等. SOCS通过调控JAK/STAT通路影响Th细胞分化在感染性疾病中的作用研究进展[J]. 中国真菌学杂志, 2021, 16(1): 51-55. |
29 | GE G, YANG Z Y, ZHANG X Y, et al. Research progress on the effect of SOCS on Th cell differentiation in infectious diseases by regulating JAK/STAT pathway[J]. Chin J Mycol, 2021, 16(1): 51-55. |
30 | TAKAHASHI R, NAKATSUKASA H, SHIOZAWA S, et al. SOCS1 is a key molecule that prevents regulatory T cell plasticity under inflammatory conditions[J]. J Immunol, 2017, 199(1): 149-158. |
31 | YAMANA J, YAMAMURA M, OKAMOTO A, et al. Resistance to IL-10 inhibition of interferon gamma production and expression of suppressor of cytokine signaling 1 in CD4+ T cells from patients with rheumatoid arthritis[J]. Arthritis Res Ther, 2004, 6(6): R567-R577. |
32 | LIANG Y, XU W D, PENG H, et al. SOCS signaling in autoimmune diseases: molecularmechanisms and therapeutic implications[J]. Eur J Immunol, 2014, 44(5): 1265-1275. |
33 | 林婉娜, 苏慧琳, 李慧敏, 等. 黄芪桂枝五物汤抗类风湿性关节炎的作用机制[J]. 中国实验方剂学杂志, 2022, 28(9): 9-15. |
33 | LIN W N, SU H L, LI H M, et al, Therapeutic mechanism of Huangqi Guizhi Wuwutang on rheumatoid arthritis[J]. Chin J Exp Formul, 2022, 28(9): 9-15. |
34 | LETELLIER E, HAAN S. SOCS2: physiological and pathological functions[J]. Front Biosci (Elite Ed), 2016, 8(1): 189-204. |
35 | CHEN Y H, SHIN J Y, WEI H M, et al. Prevention of dextran sulfate sodium-induced mouse colitis by the fungal protein Ling Zhi-8 via promoting the barrier function of intestinal epithelial cells[J]. Food Funct, 2021, 12(4): 1639-1650. |
36 | OH J, KIM S H, AHN S, et al. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-κB and mitochondrial Bfl-1 in leukemic T cells[J]. J Immunol, 2012, 189(12): 5561-5571. |
37 | 孙婷, 陈泉, 肖继, 等. NF-κB亚基泛素化研究进展[J]. 生理科学进展, 2018, 49(3): 217-221. |
37 | SUN T, CHEN Q, XIAO J, et al. The progress in ubiquitination of NF-KB subunits[J]. Prog in Physiol Sci, 2018, 49(3): 217-221. |
38 | Pi?eros Alvarez A R, Glosson-Byers N, Brandt S, et al. SOCS1 is a negative regulatorof metabolic reprogramming during sepsis[J]. JCI Insight, 2017, 2(13): e92530. |
39 | YONG Y H, WANG P, JIA R M, et al. SOCS3 control the activity of NF-κB induced by HSP70 via degradation of MyD88-adapter-like protein (Mal) in IPEC-J2 cells[J]. Int J Hyperth, 2019, 36(1): 151-159. |
40 | 刘丹华, 张瑞莉, 田旭, 等. 黄芪多糖在LPS诱导的DF-1细胞炎症反应中的抗炎作用及其调节机制[J]. 中国兽医学报, 2021, 41(1): 143-149. |
40 | LIU D H, ZHANG R L, TIAN X, et al. Anti-inflammatory effect of Astragalus polysaccharides on LPS-induced DF-1 cell inflammation and its regulatory mechanism[J]. Chin J of Vet Sci, 2021, 41(1): 143-149. |
41 | GEORGANA I, MALUQUER DE MOTES C. Cullin-5 adaptor SPSB1 controls NF-κB activation downstream of multiple signaling pathways[J]. Front Immunol, 2019, 10: 3121. |
42 | LI S, HAN S, JIN K P, et al. SOCS2 suppresses inflammation and apoptosis during NASH progression through limiting NF-κB activation in macrophages[J]. Int J Biol Sci, 2021, 17(15): 4165-4175. |
43 | LI J Y, SUN Q, ZHENG C Y, et al. Lipoxin A4-mediated p38 MAPK signaling pathway protects mice against collagen-induced arthritis[J]. Biochem Genet, 2021, 59(1): 346-365. |
44 | NOSRATPOUR S, NDIAYE K. Ankyrin-repeat and SOCS box-containing protein 9 (ASB9) regulates ovarian granulosa cells function and MAPK signaling[J]. Mol Reprod Dev, 2021, 88(12): 830-843. |
45 | 陶新磊, 刘丹华, 田旭, 等. 黄芪多糖诱导SOCS3表达对鸡巨噬细胞炎症反应的抑制作用[J]. 中国畜牧兽医, 2021, 48(11): 4284-4291. |
45 | TAO X L, LIU D H, TIAN X, et al. Inhibitory effect of Astragalus polysaccharide on inflammatory response of chicken macrophages by inducing SOCS3 expression[J]. Chin Anim Husban Vet, 2021, 48(11): 4284-4291. |
46 | FENG S, WANG J F, XU X Q, et al. The expression of SOCS and NF-κB p65 in hypopharyngeal carcinoma[J]. Iran J Public Heal, 2018, 47(12): 1874-1882. |
47 | SAHAY B, PATSEY R L, EGGERS C H, et al. CD14 signaling restrains chronic inflammation through induction of p38-MAPK/SOCS-dependent tolerance[J]. PLoS Pathog, 2009, 5(12): e1000687. |
48 | VUKMAN K V, ADAMS P N, O'NEILL S M. Fasciola hepatica tegumental coat antigen suppresses MAPK signalling in dendritic cells and up-regulates the expression of SOCS3[J]. Parasite Immunol, 2013, 35(7/8): 234-238. |
49 | VEENBERGEN S, BENNINK M B, AFFANDI A J, et al. A pivotal role for antigen-presenting cells overexpressing SOCS3 in controlling invariant NKT cell responses during collagen-induced arthritis[J]. Ann Rheum Dis, 2011, 70(12): 2167-2175. |
50 | YU C F, PENG W M, SCHLEE M, et al. SOCS1 and SOCS3 target IRF7 degradation to suppress TLR7-mediated typeⅠIFN production of human plasmacytoid dendritic cells[J]. J Immunol, 2018, 200(12): 4024-4035. |
51 | SPRINGER J M, RAVEENDRAN V V, ZHANG M C, et al. Mast cell degranulation decreases lipopolysaccharide-induced aortic gene expression and systemic levels of interleukin-6 in vivo[J]. Mediat Inflamm, 2019, 2019: 3856360. |
52 | CASTILLO J A, GIRALDO D M, HERNANDEZ J C, et al. Regulation of innate immune responses in macrophages differentiated in the presence of vitamin D and infected with dengue virus 2[J]. PLoS Neglected Trop Dis, 2021, 15(10): e0009873. |
53 | MARIJNISSEN R J, ROELEVELD D M, YOUNG D, et al. Interleukin-21 receptor deficiency increases the initial toll-like receptor 2 response but protects against joint pathology by reducing Th1 and Th17 cells during streptococcal cell wall arthritis[J]. Arthritis Rheumatol Hoboken N J, 2014, 66(4): 886-895. |
54 | CHE MAT N F, SIDDIQUI S, MEHTA D, et al. Lymphocytic choriomeningitis virus infection of dendritic cells interferes with TLR-induced IL-12/IL-23 cytokine production in an IL-10 independent manner[J]. Cytokine, 2018, 108: 105-114. |
/
〈 |
|
〉 |