Review

Progress in mechanism of transcranial direct current stimulation

  • Yang WANG ,
  • Jiayue CHENG ,
  • Zhen WANG
Expand
  • Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
WANG Zhen, E-mail: wangzhen@smhc.org.cn.

Received date: 2021-12-06

  Accepted date: 2022-06-23

  Online published: 2022-07-25

Supported by

Grants from Shanghai Municipal Health Commission(2019ZB0201)

Abstract

Transcranial direct current stimulation (tDCS), as a non-invasive brain stimulation technique,is widely used in improving brain function and behavior. Growing evidence shows its broad therapeutic promise in neuropsychiatric disorders. However, there is a lot of uncertainty about how this approach works. This review focuses on the current research on the mechanism of tDCS. The immediate effect of tDCS is mainly reflected in the change of membrane potential of neurons, while the aftereffect of tDCS can cause dynamic changes in Ca2+ concentration, regulate the release and distribution of various neurotransmitters, directly or indirectly alter synaptic plasticity, and play an important role in the regulation of synaptic metaplasticity. In addition to regional effects, tDCS results in widespread network-level changes across the brain. This review probes into the predicament of current research and puts forward some unsolved problems.

Cite this article

Yang WANG , Jiayue CHENG , Zhen WANG . Progress in mechanism of transcranial direct current stimulation[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022 , 42(7) : 952 -957 . DOI: 10.3969/j.issn.1674-8115.2022.07.016

References

1 APARíCIO L V M, GUARIENTI F, RAZZA L B, et al. A systematic review on the acceptability and tolerability of transcranial direct current stimulation treatment in neuropsychiatry trials[J]. Brain Stimul, 2016, 9(5): 671-681.
2 LEFAUCHEUR J P, ANTAL A, AYACHE S S, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS)[J]. Clin Neurophysiol, 2017, 128(1): 56-92.
3 YAVARI F, JAMIL A, MOSAYEBI SAMANI M, et al. Basic and functional effects of transcranial Electrical Stimulation (tES): an introduction[J]. Neurosci Biobehav Rev, 2018, 85: 81-92.
4 NITSCHE M A, PAULUS W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527(Pt 3): 633-639.
5 PHILIP N S, NELSON B G, FROHLICH F, et al. Low-intensity transcranial current stimulation in psychiatry[J]. Am J Psychiatry, 2017, 174(7): 628-639.
6 NITSCHE M A, FRICKE K, HENSCHKE U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans[J]. J Physiol, 2003, 553(Pt 1): 293-301.
7 NITSCHE M A, GRUNDEY J, LIEBETANZ D, et al. Catecholaminergic consolidation of motor cortical neuroplasticity in humans[J]. Cereb Cortex, 2004, 14(11): 1240-1245.
8 HILL A T, ROGASCH N C, FITZGERALD P B, et al. TMS-EEG: a window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions[J]. Neurosci Biobehav Rev, 2016, 64: 175-184.
9 NITSCHE M A, SEEBER A, FROMMANN K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex[J]. J Physiol, 2005, 568(Pt 1): 291-303.
10 LIEBETANZ D, NITSCHE M A, TERGAU F, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability[J]. Brain, 2002, 125(Pt 10): 2238-2247.
11 ANASTASSIOU C A, PERIN R, MARKRAM H, et al. Ephaptic coupling of cortical neurons[J]. Nat Neurosci, 2011, 14(2): 217-223.
12 BRUNONI A R, NITSCHE M A, BOLOGNINI N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions[J]. Brain Stimul, 2012, 5(3): 175-195.
13 BEDLACK R S Jr, WEI M, LOEW L M. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth[J]. Neuron, 1992, 9(3): 393-403.
14 RAHMAN A, REATO D, ARLOTTI M, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects[J]. J Physiol, 2013, 591(10): 2563-2578.
15 MCCAIG C D, RAJNICEK A M, SONG B, et al. Controlling cell behavior electrically: current views and future potential[J]. Physiol Rev, 2005, 85(3): 943-978.
16 MYCIELSKA M E, DJAMGOZ M B A. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease[J]. J Cell Sci, 2004, 117(Pt 9): 1631-1639.
17 ESHRA A, SCHMIDT H, EILERS J, et al. Calcium dependence of neurotransmitter release at a high fidelity synapse[J]. Elife, 2021, 10: e70408.
18 CAMBIAGHI M, BUFFELLI M, MASIN L, et al. Transcranial direct current stimulation of the mouse prefrontal cortex modulates serotonergic neural activity of the dorsal raphe nucleus[J]. Brain Stimul, 2020, 13(3): 548-550.
19 BACHTIAR V, JOHNSTONE A, BERRINGTON A, et al. Modulating regional motor cortical excitability with noninvasive brain stimulation results in neurochemical changes in bilateral motor cortices[J]. J Neurosci, 2018, 38(33): 7327-7336.
20 ANTONENKO D, THIELSCHER A, SATURNINO G B, et al. Towards precise brain stimulation: is electric field simulation related to neuromodulation? [J]. Brain Stimul, 2019, 12(5): 1159-1168.
21 ANTONENKO D, SCHUBERT F, BOHM F, et al. tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults[J]. J Neurosci, 2017, 37(15): 4065-4073.
22 LENGU K, RYAN S, PELTIER S J, et al. Effects of high definition-transcranial direct current stimulation on local GABA and glutamate levels among older adults with and without mild cognitive impairment: an exploratory study[J]. J Alzheimers Dis, 2021, 84(3): 1091-1102.
23 ZHAO X J, DING J, PAN H J, et al. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats[J]. J Physiol, 2020, 598(17): 3727-3745.
24 HEIMRATH K, BRECHMANN A, BLOBEL-LüER R, et al. Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study[J]. Sci Rep, 2020, 10(1): 20111.
25 MAGEE J C, GRIENBERGER C. Synaptic plasticity forms and functions[J]. Annu Rev Neurosci, 2020, 43: 95-117.
26 NICOLL R A. A brief history of long-term potentiation[J]. Neuron, 2017, 93(2): 281-290.
27 RANIERI F, PODDA M V, RICCARDI E, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation[J]. J Neurophysiol, 2012, 107(7): 1868-1880.
28 FRASE L, MERTENS L, KRAHL A, et al. Transcranial direct current stimulation induces long-term potentiation-like plasticity in the human visual cortex[J]. Transl Psychiatry, 2021, 11(1): 17.
29 FRITSCH B, REIS J, MARTINOWICH K, et al. Direct Current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204.
30 YU T H, WU Y J, CHIEN, et al. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor[J]. Neuropharmacology, 2019, 144: 358-367.
31 PARK H, POPESCU A, POO M M. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP[J]. Neuron, 2014, 84(5): 1009-1022.
32 KRONBERG G, RAHMAN A, SHARMA M, et al. Direct Current stimulation boosts hebbian plasticity in vitro[J]. Brain Stimul, 2020, 13(2): 287-301.
33 FOX K, STRYKER M. Integrating hebbian and homeostatic plasticity: introduction[J]. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1715): 20160413.
34 LI J, PARK E, ZHONG L R, et al. Homeostatic synaptic plasticity as a metaplasticity mechanism:?a molecular and cellular perspective[J]. Curr Opin Neurobiol, 2019, 54: 44-53.
35 ABRAHAM W C, BEAR M F. Metaplasticity: the plasticity of synaptic plasticity[J]. Trends Neurosci, 1996, 19(4): 126-130.
36 COOPER L N, BEAR M F. The BCM theory of synapse modification at 30: interaction of theory with experiment[J]. Nat Rev Neurosci, 2012, 13(11): 798-810.
37 CARVALHO S, BOGGIO P S, GON?ALVES ó F, et al. Transcranial direct current stimulation based metaplasticity protocols in working memory[J]. Brain Stimul, 2015, 8(2): 289-294.
38 HURLEY R, MACHADO L. Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? [J]. Neurosci Biobehav Rev, 2017, 83: 155-159.
39 COSENTINO G, FIERRO B, PALADINO P, et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex[J]. Eur J Neurosci, 2012, 35(1): 119-124.
40 BOCCI T, CALEO M, TOGNAZZI S, et al. Evidence for metaplasticity in the human visual cortex[J]. J Neural Transm (Vienna), 2014, 121(3): 221-231.
41 VINES B W, CERRUTI C, SCHLAUG G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation[J]. BMC Neurosci, 2008, 9: 103.
42 ANTAL A, POLANIA R, SCHMIDT-SAMOA C, et al. Transcranial direct current stimulation over the primary motor cortex during fMRI[J]. Neuroimage, 2011, 55(2): 590-596.
43 STAGG C J, BEST J G, STEPHENSON M C, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation[J]. J Neurosci, 2009, 29(16): 5202-5206.
44 MARSHALL L, M?LLE M, HALLSCHMID M, et al. Transcranial direct current stimulation during sleep improves declarative memory[J]. J Neurosci, 2004, 24(44): 9985-9992.
45 ARIF Y, SPOONER R K, HEINRICHS-GRAHAM E, et al. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence[J]. J Physiol, 2021, 599(24): 5451-5463.
46 ARIF Y, SPOONER R K, WIESMAN A I, et al. Prefrontal multielectrode transcranial direct current stimulation modulates performance and neural activity serving visuospatial processing[J]. Cereb Cortex, 2020, 30(9): 4847-4857.
47 SPOONER R K, EASTMAN J A, REZICH M T, et al. High-definition transcranial direct current stimulation dissociates Fronto-visual Theta lateralization during visual selective attention[J]. J Physiol, 2020, 598(5): 987-998.
48 RUTTORF M, KRISTENSEN S, SCHAD L R, et al. Transcranial direct current stimulation alters functional network structure in humans: a graph theoretical analysis[J]. IEEE Trans Med Imaging, 2019, 38(12): 2829-2837.
49 LEAVER A M, GONZALEZ S, VASAVADA M, et al. Modulation of brain networks during MR-compatible transcranial direct current stimulation[J]. Neuroimage, 2022, 250: 118874.
50 GUO D L, LI J Y, ZHANG Y, et al. Transcranial direct current stimulation reconstructs diminished thalamocortical connectivity during prolonged resting wakefulness: a resting-state fMRI pilot study[J]. Brain Imaging Behav, 2020, 14(1): 278-288.
51 CHAN M M, HAN Y M. The effect of transcranial direct current stimulation in changing resting-state functional connectivity in patients with neurological disorders: a systematic review[J]. J Cent Nerv Syst Dis, 2020, 12: 1179573520976832.
52 KEESER D, MEINDL T, BOR J, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI[J]. J Neurosci, 2011, 31(43): 15284-15293.
53 PE?A-GóMEZ C, SALA-LONCH R, JUNQUé C, et al. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI[J]. Brain Stimul, 2012, 5(3): 252-263.
54 YAQUB M A, HONG K S, ZAFAR A, et al. Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals[J]. Int J Neural Syst, 2022, 32(1): 2150050.
55 LIU A L, V?R?SLAKOS M, KRONBERG G, et al. Immediate neurophysiological effects of transcranial electrical stimulation[J]. Nat Commun, 2018, 9(1): 5092.
56 BERGMANN T O, KARABANOV A, HARTWIGSEN G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives[J]. Neuroimage, 2016, 140: 4-19.
57 HORVATH J C, CARTER O, FORTE J D. Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be)[J]. Front Syst Neurosci, 2014, 8: 2.
Outlines

/