Journal of Shanghai Jiao Tong University (Medical Science) >
Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance
Received date: 2024-09-27
Accepted date: 2024-11-25
Online published: 2025-02-24
Supported by
National Natural Science Foundation of China(82230106)
Cutaneous melanoma (CM) is a highly malignant tumor caused by malignant proliferation of melanocytes, characterized by distant metastasis and high mortality. Although targeted therapy and immunotherapy have significantly improved the survival rates of advanced CM patients, tumor resistance remains a key barrier to further improving treatment outcomes. In recent years, significant progress has been made in the study of autophagy as a key regulatory cell death mode in the pathogenesis of CM. Autophagy is the main mechanism that mediates the degradation and recycling of various cellular components through lysosomes to maintain the homeostasis of the intracellular environment. A large number of studies have confirmed that the role of autophagy in CM is complex and controversial. In the early stages of CM development, autophagy may inhibit abnormal proliferation of tumor cells by removing damaged cell components. However, as the tumor progresses, autophagy may transform into a role that promotes tumor invasion and metastasis. In advanced CM, the activation of autophagy helps tumor cells survive in stressful environments. In particular, in CM with BRAF (V-Raf murine sarcoma viral oncogene homolog B1) mutations, autophagy activity is often enhanced, weakening the effectiveness of BRAF inhibitor-targeted therapy. This article provides an in-depth analysis of the dual effects of autophagy on the progression of CM and explores the role of autophagy in CM resistance, in order to provide insights for the development of new targeted therapy strategies for CM.
LUO Wen , Lü Mingjun , ZHANG Zhen , ZHANG Xue , YAO Zhirong . Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025 , 45(2) : 233 -240 . DOI: 10.3969/j.issn.1674-8115.2025.02.013
1 | BAI X, FLAHERTY K T. Targeted and immunotherapies in BRAF mutant melanoma: where we stand and what to expect[J]. Br J Dermatol, 2021, 185(2): 253-262. |
2 | BAHAR M E, KIM H J, KIM D R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455. |
3 | SHEN Q S, HAN Y F, WU K, et al. MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling[J]. Signal Transduct Target Ther, 2022, 7(1): 147. |
4 | CARLINO M S, LARKIN J, LONG G V. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021, 398(10304): 1002-1014. |
5 | KLIONSKY D J, PETRONI G, AMARAVADI R K, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. |
6 | KUCHITSU Y, TAGUCHI T. Lysosomal microautophagy: an emerging dimension in mammalian autophagy[J]. Trends Cell Biol, 2024, 34(7): 606-616. |
7 | FERREIRA J V, DA ROSA SOARES A, RAMALHO J, et al. LAMP2A regulates the loading of proteins into exosomes[J]. Sci Adv, 2022, 8(12): eabm1140. |
8 | JOSHI J N, LERNER A D, SCALLO F, et al. mTORC1 activity oscillates throughout the cell cycle, promoting mitotic entry and differentially influencing autophagy induction[J]. Cell Rep, 2024, 43(8): 114543. |
9 | WU N, ZHENG W H, ZHOU Y D, et al. Autophagy in aging-related diseases and cancer: principles, regulatory mechanisms and therapeutic potential[J]. Ageing Res Rev, 2024, 100: 102428. |
10 | DEBNATH J, GAMMOH N, RYAN K M. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 560-575. |
11 | NAKATOGAWA H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 439-458. |
12 | SHU F, XIAO H, LI Q N, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 32. |
13 | YEH I, BASTIAN B C. Melanoma pathology: new approaches and classification[J]. Br J Dermatol, 2021, 185(2): 282-293. |
14 | RAHMATI M, EBRAHIM S, HASHEMI S, et al. New insights on the role of autophagy in the pathogenesis and treatment of melanoma[J]. Mol Biol Rep, 2020, 47(11): 9021-9032. |
15 | DELYON J, BECHERIRAT S, ROGER A, et al. PDE4D drives rewiring of the MAPK pathway in BRAF-mutated melanoma resistant to MAPK inhibitors[J]. Cell Commun Signal, 2024, 22(1): 559. |
16 | INCE F A, SHARIEV A, DIXON K. PTEN as a target in melanoma[J]. J Clin Pathol, 2022: jclinpath-jclin2021-208008. |
17 | NOONAN H R, THORNOCK A M, BARBANO J, et al. A chronic signaling TGFb zebrafish reporter identifies immune response in melanoma[J]. eLife, 2024, 13: e83527. |
18 | LOFTUS A W, ZAREI M, KAKISH H, et al. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma[J]. Cancer Treat Rev, 2024, 129: 102795. |
19 | PANGILINAN C, XU X W, HERLYN M, et al. Autophagy paradox: strategizing treatment modality in melanoma[J]. Curr Treat Options Oncol, 2023, 24(2): 130-145. |
20 | RATHER R A, BHAGAT M, SINGH S K. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: crosstalk and therapeutic targets in cutaneous melanoma[J]. Mutat Res Rev Mutat Res, 2020, 785: 108321. |
21 | LIU H, HE Z Y, VON RüTTE T, et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma[J]. Sci Transl Med, 2013, 5(202): 202ra123. |
22 | ROSENFELDT M T, O'PREY J, LINDSAY C R, et al. Loss of autophagy affects melanoma development in a manner dependent on PTEN status[J]. Cell Death Differ, 2021, 28(4): 1437-1439. |
23 | PATEL N H, BLOUKH S, ALWOHOSH E, et al. Autophagy and senescence in cancer therapy[J]. Adv Cancer Res, 2021, 150: 1-74. |
24 | LI Z, JIANG K, ZHU X F, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells[J]. Cancer Lett, 2016, 370(2): 332-344. |
25 | LIU X J, YIN M X, DONG J W, et al. Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR[J]. Acta Pharm Sin B, 2021, 11(10): 3134-3149. |
26 | GUO W N, WANG H N, LI C Y. Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 424. |
27 | EMBABY A, HUIJBERTS S C F A, WANG L Q, et al. A proof-of-concept study of sequential treatment with the HDAC inhibitor vorinostat following BRAF and MEK inhibitors in BRAFV600-mutated melanoma[J]. Clin Cancer Res, 2024, 30(15): 3157-3166. |
28 | XUE G D, KOHLER R, TANG F Y, et al. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition[J]. Oncotarget, 2017, 8(41): 69204-69218. |
29 | GOVINDARAJAN B, SLIGH J E, VINCENT B J, et al. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma[J]. J Clin Invest, 2007, 117(3): 719-729. |
30 | DU B X, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells[J]. Chin J Nat Med, 2022, 20(4): 290-300. |
31 | SANDUJA S, FENG Y, MATHIS R A, et al. AMPK promotes tolerance to Ras pathway inhibition by activating autophagy[J]. Oncogene, 2016, 35(40): 5295-5303. |
32 | LI Y Y, WU C J, SHAH S S, et al. Degradation of AMPK-α1 sensitizes BRAF inhibitor-resistant melanoma cells to arginine deprivation[J]. Mol Oncol, 2017, 11(12): 1806-1825. |
33 | SUN T, JIAO L, WANG Y X, et al. SIRT1 induces epithelial-mesenchymal transition by promoting autophagic degradation of E-cadherin in melanoma cells[J]. Cell Death Dis, 2018, 9(2): 136. |
34 | WANG L W, GUO W N, MA J Y, et al. Aberrant SIRT6 expression contributes to melanoma growth: role of the autophagy paradox and IGF-AKT signaling[J]. Autophagy, 2018, 14(3): 518-533. |
35 | KWIATKOWSKA D, MAZUR E, REICH A. YY1 is a key player in melanoma immunotherapy/targeted treatment resistance[J]. Front Oncol, 2022, 12: 856963. |
36 | PAPACCIO F, KOVACS D, BELLEI B, et al. Profiling cancer-associated fibroblasts in melanoma[J]. Int J Mol Sci, 2021, 22(14): 7255. |
37 | MADEJ E, LISEK A, BRO?YNA A A, et al. The involvement of RIPK4 in TNF-α-stimulated IL-6 and IL-8 production by melanoma cells[J]. J Cancer Res Clin Oncol, 2024, 150(4): 209. |
38 | KEWITZ-HEMPEL S, WINDISCH N, HAUSE G, et al. Extracellular vesicles derived from melanoma cells induce carcinoma-associated fibroblasts via miR-92b-3p mediated downregulation of PTEN[J]. J Extracell Vesicles, 2024, 13(9): e12509. |
39 | XU J, YANG K C, GO N E, et al. Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations[J]. Autophagy, 2022, 18(11): 2547-2560. |
40 | BERNARD M, YANG B, MIGNEAULT F, et al. Autophagy drives fibroblast senescence through MTORC2 regulation[J]. Autophagy, 2020, 16(11): 2004-2016. |
41 | ZHANG C T, SUN Y Z, LI S C, et al. Autophagic flux restoration enhances the antitumor efficacy of tumor infiltrating lymphocytes[J]. J Immunother Cancer, 2022, 10(10): e004868. |
42 | GARTRELL-CORRADO R D, CHEN A X, RIZK E M, et al. Linking transcriptomic and imaging data defines features of a favorable tumor immune microenvironment and identifies a combination biomarker for primary melanoma[J]. Cancer Res, 2020, 80(5): 1078-1087. |
43 | LEQUEUX A, NOMAN M Z, XIAO M, et al. Targeting HIF-1 α transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy[J]. Oncogene, 2021, 40(28): 4725-4735. |
44 | YAMAMOTO K, VENIDA A, YANO J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ[J]. Nature, 2020, 581(7806): 100-105. |
45 | POILLET-PEREZ L, SHARP D W, YANG Y, et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response[J]. Nat Cancer, 2020, 1(9): 923-934. |
46 | TOLCHER A W, HONG D S, VANDROSS A L, et al. A phase 1/2 study of DCC-3116 as a single agent and in combination with trametinib in patients with advanced or metastatic solid tumors with RAS or RAF mutations[J]. J Clin Oncol, 2022, 40(16_suppl): TPS3178. |
47 | BAO Y, DING Z, ZHAO P, et al. Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells[J]. Cell Death Dis, 2020, 11(4): 223. |
48 | NOMAN M Z, PARPAL S, VAN MOER K, et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy[J]. Sci Adv, 2020, 6(18): eaax7881. |
49 | LIU Y J, HAO Y H, LI Y X, et al. Salinomycin induces autophagic cell death in salinomycin-sensitive melanoma cells through inhibition of autophagic flux[J]. Sci Rep, 2020, 10(1): 18515. |
50 | XIA Y, XU F Y, XIONG M P, et al. Repurposing of antipsychotic trifluoperazine for treating brain metastasis, lung metastasis and bone metastasis of melanoma by disrupting autophagy flux[J]. Pharmacol Res, 2021, 163: 105295. |
51 | RANGWALA R, LEONE R, CHANG Y C, et al. Phase Ⅰ trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1369-1379. |
52 | MEHNERT J M, MITCHELL T C, HUANG A C, et al. BAMM (BRAF autophagy and MEK inhibition in melanoma): a phase Ⅰ/Ⅱ trial of dabrafenib, trametinib, and hydroxychloroquine in advanced BRAFV600-mutant melanoma[J]. Clin Cancer Res, 2022, 28(6): 1098-1106. |
53 | AMARAVADI R K. Clinical trial results show promise of targeting autophagy BRAF mutant melanoma[J]. Autophagy, 2022, 18(6): 1470-1471. |
54 | AWADA G, SCHWARZE J K, TIJTGAT J, et al. A lead-in safety study followed by a phase 2 clinical trial of dabrafenib, trametinib and hydroxychloroquine in advanced BRAFV600 mutant melanoma patients previously treated with BRAF-/ MEK-inhibitors and immune checkpoint inhibitors[J]. Melanoma Res, 2022, 32(3): 183-191. |
55 | RANGWALA R, CHANG Y C, HU J, et al. Combined MTOR and autophagy inhibition: phase Ⅰ trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1391-1402. |
/
〈 |
|
〉 |