Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (2): 233-240.doi: 10.3969/j.issn.1674-8115.2025.02.013
• Review • Previous Articles
LUO Wen(), LÜ Mingjun, ZHANG Zhen, ZHANG Xue, YAO Zhirong(
)
Received:
2024-09-27
Accepted:
2024-11-25
Online:
2025-02-24
Published:
2025-02-24
Contact:
YAO Zhirong
E-mail:luowen1006@sjtu.edu.cn;yaozhirong@xinhuamed.com.cn
Supported by:
CLC Number:
LUO Wen, LÜ Mingjun, ZHANG Zhen, ZHANG Xue, YAO Zhirong. Research progress on the dual effects of autophagy in cutaneous melanoma and its role in drug resistance[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 233-240.
Agent | Autophagy-related mechanism | Phase | Outcome | Refrence |
---|---|---|---|---|
HCQ+TMZ | Inhibit fusion of autophagosome and lysosome | Ⅰ | 14% PR, 27% SD | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅰ/Ⅱ | 85% OR, 41% CR PFS: 11.2 months, OS: 26.5 months | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅱ | 20% OR | [ |
HCQ+ TEM | mTOR inhibitor | Ⅰ | PFS: 3.5 months | [ |
Tab 1 Clinical study of targeted autophagy therapy for CM
Agent | Autophagy-related mechanism | Phase | Outcome | Refrence |
---|---|---|---|---|
HCQ+TMZ | Inhibit fusion of autophagosome and lysosome | Ⅰ | 14% PR, 27% SD | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅰ/Ⅱ | 85% OR, 41% CR PFS: 11.2 months, OS: 26.5 months | [ |
HCQ+D+T | Inhibit fusion of autophagosome and lysosome | Ⅱ | 20% OR | [ |
HCQ+ TEM | mTOR inhibitor | Ⅰ | PFS: 3.5 months | [ |
1 | BAI X, FLAHERTY K T. Targeted and immunotherapies in BRAF mutant melanoma: where we stand and what to expect[J]. Br J Dermatol, 2021, 185(2): 253-262. |
2 | BAHAR M E, KIM H J, KIM D R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455. |
3 | SHEN Q S, HAN Y F, WU K, et al. MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling[J]. Signal Transduct Target Ther, 2022, 7(1): 147. |
4 | CARLINO M S, LARKIN J, LONG G V. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021, 398(10304): 1002-1014. |
5 | KLIONSKY D J, PETRONI G, AMARAVADI R K, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. |
6 | KUCHITSU Y, TAGUCHI T. Lysosomal microautophagy: an emerging dimension in mammalian autophagy[J]. Trends Cell Biol, 2024, 34(7): 606-616. |
7 | FERREIRA J V, DA ROSA SOARES A, RAMALHO J, et al. LAMP2A regulates the loading of proteins into exosomes[J]. Sci Adv, 2022, 8(12): eabm1140. |
8 | JOSHI J N, LERNER A D, SCALLO F, et al. mTORC1 activity oscillates throughout the cell cycle, promoting mitotic entry and differentially influencing autophagy induction[J]. Cell Rep, 2024, 43(8): 114543. |
9 | WU N, ZHENG W H, ZHOU Y D, et al. Autophagy in aging-related diseases and cancer: principles, regulatory mechanisms and therapeutic potential[J]. Ageing Res Rev, 2024, 100: 102428. |
10 | DEBNATH J, GAMMOH N, RYAN K M. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 560-575. |
11 | NAKATOGAWA H. Mechanisms governing autophagosome biogenesis[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 439-458. |
12 | SHU F, XIAO H, LI Q N, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 32. |
13 | YEH I, BASTIAN B C. Melanoma pathology: new approaches and classification[J]. Br J Dermatol, 2021, 185(2): 282-293. |
14 | RAHMATI M, EBRAHIM S, HASHEMI S, et al. New insights on the role of autophagy in the pathogenesis and treatment of melanoma[J]. Mol Biol Rep, 2020, 47(11): 9021-9032. |
15 | DELYON J, BECHERIRAT S, ROGER A, et al. PDE4D drives rewiring of the MAPK pathway in BRAF-mutated melanoma resistant to MAPK inhibitors[J]. Cell Commun Signal, 2024, 22(1): 559. |
16 | INCE F A, SHARIEV A, DIXON K. PTEN as a target in melanoma[J]. J Clin Pathol, 2022: jclinpath-jclin2021-208008. |
17 | NOONAN H R, THORNOCK A M, BARBANO J, et al. A chronic signaling TGFb zebrafish reporter identifies immune response in melanoma[J]. eLife, 2024, 13: e83527. |
18 | LOFTUS A W, ZAREI M, KAKISH H, et al. Therapeutic implications of the metabolic changes associated with BRAF inhibition in melanoma[J]. Cancer Treat Rev, 2024, 129: 102795. |
19 | PANGILINAN C, XU X W, HERLYN M, et al. Autophagy paradox: strategizing treatment modality in melanoma[J]. Curr Treat Options Oncol, 2023, 24(2): 130-145. |
20 | RATHER R A, BHAGAT M, SINGH S K. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: crosstalk and therapeutic targets in cutaneous melanoma[J]. Mutat Res Rev Mutat Res, 2020, 785: 108321. |
21 | LIU H, HE Z Y, VON RÜTTE T, et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma[J]. Sci Transl Med, 2013, 5(202): 202ra123. |
22 | ROSENFELDT M T, O'PREY J, LINDSAY C R, et al. Loss of autophagy affects melanoma development in a manner dependent on PTEN status[J]. Cell Death Differ, 2021, 28(4): 1437-1439. |
23 | PATEL N H, BLOUKH S, ALWOHOSH E, et al. Autophagy and senescence in cancer therapy[J]. Adv Cancer Res, 2021, 150: 1-74. |
24 | LI Z, JIANG K, ZHU X F, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells[J]. Cancer Lett, 2016, 370(2): 332-344. |
25 | LIU X J, YIN M X, DONG J W, et al. Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR[J]. Acta Pharm Sin B, 2021, 11(10): 3134-3149. |
26 | GUO W N, WANG H N, LI C Y. Signal pathways of melanoma and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 424. |
27 | EMBABY A, HUIJBERTS S C F A, WANG L Q, et al. A proof-of-concept study of sequential treatment with the HDAC inhibitor vorinostat following BRAF and MEK inhibitors in BRAFV600-mutated melanoma[J]. Clin Cancer Res, 2024, 30(15): 3157-3166. |
28 | XUE G D, KOHLER R, TANG F Y, et al. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition[J]. Oncotarget, 2017, 8(41): 69204-69218. |
29 | GOVINDARAJAN B, SLIGH J E, VINCENT B J, et al. Overexpression of Akt converts radial growth melanoma to vertical growth melanoma[J]. J Clin Invest, 2007, 117(3): 719-729. |
30 | DU B X, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells[J]. Chin J Nat Med, 2022, 20(4): 290-300. |
31 | SANDUJA S, FENG Y, MATHIS R A, et al. AMPK promotes tolerance to Ras pathway inhibition by activating autophagy[J]. Oncogene, 2016, 35(40): 5295-5303. |
32 | LI Y Y, WU C J, SHAH S S, et al. Degradation of AMPK-α1 sensitizes BRAF inhibitor-resistant melanoma cells to arginine deprivation[J]. Mol Oncol, 2017, 11(12): 1806-1825. |
33 | SUN T, JIAO L, WANG Y X, et al. SIRT1 induces epithelial-mesenchymal transition by promoting autophagic degradation of E-cadherin in melanoma cells[J]. Cell Death Dis, 2018, 9(2): 136. |
34 | WANG L W, GUO W N, MA J Y, et al. Aberrant SIRT6 expression contributes to melanoma growth: role of the autophagy paradox and IGF-AKT signaling[J]. Autophagy, 2018, 14(3): 518-533. |
35 | KWIATKOWSKA D, MAZUR E, REICH A. YY1 is a key player in melanoma immunotherapy/targeted treatment resistance[J]. Front Oncol, 2022, 12: 856963. |
36 | PAPACCIO F, KOVACS D, BELLEI B, et al. Profiling cancer-associated fibroblasts in melanoma[J]. Int J Mol Sci, 2021, 22(14): 7255. |
37 | MADEJ E, LISEK A, BROŻYNA A A, et al. The involvement of RIPK4 in TNF-α-stimulated IL-6 and IL-8 production by melanoma cells[J]. J Cancer Res Clin Oncol, 2024, 150(4): 209. |
38 | KEWITZ-HEMPEL S, WINDISCH N, HAUSE G, et al. Extracellular vesicles derived from melanoma cells induce carcinoma-associated fibroblasts via miR-92b-3p mediated downregulation of PTEN[J]. J Extracell Vesicles, 2024, 13(9): e12509. |
39 | XU J, YANG K C, GO N E, et al. Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations[J]. Autophagy, 2022, 18(11): 2547-2560. |
40 | BERNARD M, YANG B, MIGNEAULT F, et al. Autophagy drives fibroblast senescence through MTORC2 regulation[J]. Autophagy, 2020, 16(11): 2004-2016. |
41 | ZHANG C T, SUN Y Z, LI S C, et al. Autophagic flux restoration enhances the antitumor efficacy of tumor infiltrating lymphocytes[J]. J Immunother Cancer, 2022, 10(10): e004868. |
42 | GARTRELL-CORRADO R D, CHEN A X, RIZK E M, et al. Linking transcriptomic and imaging data defines features of a favorable tumor immune microenvironment and identifies a combination biomarker for primary melanoma[J]. Cancer Res, 2020, 80(5): 1078-1087. |
43 | LEQUEUX A, NOMAN M Z, XIAO M, et al. Targeting HIF-1 α transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy[J]. Oncogene, 2021, 40(28): 4725-4735. |
44 | YAMAMOTO K, VENIDA A, YANO J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-Ⅰ[J]. Nature, 2020, 581(7806): 100-105. |
45 | POILLET-PEREZ L, SHARP D W, YANG Y, et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response[J]. Nat Cancer, 2020, 1(9): 923-934. |
46 | TOLCHER A W, HONG D S, VANDROSS A L, et al. A phase 1/2 study of DCC-3116 as a single agent and in combination with trametinib in patients with advanced or metastatic solid tumors with RAS or RAF mutations[J]. J Clin Oncol, 2022, 40(16_suppl): TPS3178. |
47 | BAO Y, DING Z, ZHAO P, et al. Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells[J]. Cell Death Dis, 2020, 11(4): 223. |
48 | NOMAN M Z, PARPAL S, VAN MOER K, et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy[J]. Sci Adv, 2020, 6(18): eaax7881. |
49 | LIU Y J, HAO Y H, LI Y X, et al. Salinomycin induces autophagic cell death in salinomycin-sensitive melanoma cells through inhibition of autophagic flux[J]. Sci Rep, 2020, 10(1): 18515. |
50 | XIA Y, XU F Y, XIONG M P, et al. Repurposing of antipsychotic trifluoperazine for treating brain metastasis, lung metastasis and bone metastasis of melanoma by disrupting autophagy flux[J]. Pharmacol Res, 2021, 163: 105295. |
51 | RANGWALA R, LEONE R, CHANG Y C, et al. Phase Ⅰ trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1369-1379. |
52 | MEHNERT J M, MITCHELL T C, HUANG A C, et al. BAMM (BRAF autophagy and MEK inhibition in melanoma): a phase Ⅰ/Ⅱ trial of dabrafenib, trametinib, and hydroxychloroquine in advanced BRAFV600-mutant melanoma[J]. Clin Cancer Res, 2022, 28(6): 1098-1106. |
53 | AMARAVADI R K. Clinical trial results show promise of targeting autophagy BRAF mutant melanoma[J]. Autophagy, 2022, 18(6): 1470-1471. |
54 | AWADA G, SCHWARZE J K, TIJTGAT J, et al. A lead-in safety study followed by a phase 2 clinical trial of dabrafenib, trametinib and hydroxychloroquine in advanced BRAFV600 mutant melanoma patients previously treated with BRAF-/ MEK-inhibitors and immune checkpoint inhibitors[J]. Melanoma Res, 2022, 32(3): 183-191. |
55 | RANGWALA R, CHANG Y C, HU J, et al. Combined MTOR and autophagy inhibition: phase Ⅰ trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma[J]. Autophagy, 2014, 10(8): 1391-1402. |
[1] | WEI Yunxin, JIANG Xushun, CAI Mengyao, WEN Ruizhi, DU Xiaogang. Correlation analysis of COMP and autophagy in diabetic nephropathy and its functional verification [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 847-858. |
[2] | ZHANG Yong, LI Weihong, CHENG Zhipeng, WANG bin, WANG Siheng, WANG Yubin. Research status of receptor-interacting protein kinase 1 in regulating cancer progression and immune response [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 788-794. |
[3] | XU Wenhui, YANG Chang, LI Ruiqing, BIAN Jing, LI Xiayi, ZHENG Leizhen. Exploratory study of interferon regulatory factor 3 promoting proliferation and invasion related to colorectal cancer cells [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(3): 301-311. |
[4] | DING Yanling, LI Jie, YUAN Jun, LI Yan. Research progress in targeted therapies of chronic lymphocytic leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(2): 264-270. |
[5] | TANG Sijie, MI Jianqing. Clinical advances in antibody-drug conjugates for hematological malignancies [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(12): 1607-1614. |
[6] | FANG Xinyue, SHI Lan, XIA Siyi, WANG Jiaxuan, WU Yingli, HE Kejun. Research progress in Menin-MLL interaction and its inhibitors in MLL-rearranged leukemia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(10): 1287-1298. |
[7] | ZHOU Wanzhen, TENG Yincheng. Research progress of the role of non-canonical Wnt signaling pathway in ovarian cancer and its potential therapeutic implications [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 1056-1063. |
[8] | GAO Nan, HAO Gem, MA Bingjie, JIN Tian, MA Ke, LIU Xiaoming. Translocator protein activates autophagy in diabetic neuropathic pain rats via regulation of the Keap1/Nrf2/HO-1 signaling [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(8): 988-996. |
[9] | WU Qiqi, WANG Hao, LIN Li, YAN Bo, ZHANG Shulin. miR-185-5p facilitates intracellular Mycobacterium growth via inhibiting macrophage autophagy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 699-708. |
[10] | JIN Fangquan, FAN Chenghu, TANG Xiaodong, CHEN Yantong, QI Bingxian. Research progress in the relationship between mitochondrial dysfunction and osteoporosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 761-767. |
[11] | MEI Yanqing, HAN Yujie, WENG Wenyun, ZHANG Lei, TANG Yujie. In vitro therapeutic effects and molecular mechanisms of targeted inhibition of CDK12/13 in high-grade gliomas [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 545-559. |
[12] | XU Yinglian, TIAN Jing, ZHANG Xiang, ZHAO Shunying. Research progress in the roles of airway epithelial cells in the pathogenesis of asthma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 619-623. |
[13] | WEI Lanyi, XUE Xiaochuan, CHEN Junjun, YANG Quanjun, WANG Mengyue, HAN Yonglong. Research progress of tumor-associated macrophages in immune microenvironment and targeted therapy of osteosarcoma [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(5): 624-630. |
[14] | CHEN Yixin, CHENG Lizhen, LIN Yijia, MIAO Ya. Change of transcription factor EB activity and autophagy in hippocampus of type 2 diabetic encephalopathy mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 162-170. |
[15] | LIU Tiexin, LIN Junqing, ZHENG Xianyou. Research progress of subcellular structure-targeted therapy in spinal cord injury [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 230-236. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||