Review

Advances in nanomaterials for promoting bone tissue regeneration by reducing reactive oxygen species levels

  • LU Jiayi ,
  • LIU Jinzhe ,
  • GUO Shangchun ,
  • TAO Shicong
Expand
  • 1.Clinical Medical College of Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
    2.Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    3.Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
    4.Shanghai Institute of Microsurgery on Extremities, Shanghai 200233, China
TAO Shicong, E-mail: sctao@shsmu.edu.cn.

Received date: 2024-10-10

  Accepted date: 2024-12-10

  Online published: 2025-04-21

Supported by

National Natural Science Foundation of China(81802226);Program of Pujiang Talents of Shanghai(2019PJD038);Shanghai "Rising Stars of Medical Talent" Youth Development Program in 2020;"Two-hundred Talents" Program of Shanghai Jiao Tong University School of Medicine(2022-017);Shanghai Sixth People's Hospital Excellent Young Scientist Development Program(ynyq202101)

Abstract

Reactive oxygen species (ROS) are common products of bone tissue injury. If ROS cannot be removed in time, oxidative stress will be induced in the cells, which will have a negative effect on the regeneration of bone tissue. In recent years, with the deepening of research, nanomaterials capable of reducing ROS levels have shown increasing potential in promoting bone tissue regeneration. Currently, nanomaterials applied to reduce ROS levels mainly include those with surface modifications and microstructural designs, dopant-modified inorganic materials, functionalized polymeric materials and hydrogels, and nano-enzymatic materials. However, the clinical application of these nanomaterials is still limited due to their potential cytotoxicity and the lack of sufficient clinical trials. This literature review summarises the research on the use of nanomaterials to reduce ROS levels to promote bone regeneration and provides ideas for the future design and development of novel nanomaterials in this field.

Cite this article

LU Jiayi , LIU Jinzhe , GUO Shangchun , TAO Shicong . Advances in nanomaterials for promoting bone tissue regeneration by reducing reactive oxygen species levels[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025 , 45(4) : 487 -492 . DOI: 10.3969/j.issn.1674-8115.2025.04.011

References

1 YUDOH K, SUGISHITA Y, SUZUKI-TAKAHASHI Y. Bone development and regeneration 2.0[J]. Int J Mol Sci, 2023, 24(10): 8761.
2 SAHOO B M, BANIK B K, BORAH P, et al. Reactive oxygen species (ROS): key components in cancer therapies[J]. Anticancer Agents Med Chem, 2022, 22(2): 215-222.
3 BOTTJE W G. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria[J]. Poult Sci, 2019, 98(10): 4223-4230.
4 ZHAO R Z, JIANG S, ZHANG L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review)[J]. Int J Mol Med, 2019, 44(1): 3-15.
5 LI Z M, ZHAO T F, DING J, et al. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury[J]. Bioact Mater, 2023, 19: 550-568.
6 GUO Y, GUAN T, SHAFIQ K, et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev, 2023, 88: 101955.
7 SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031.
8 ZHOU L, ZHANG Y F, YANG F H, et al. Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway[J]. Cell Commun Signal, 2021, 19(1): 58.
9 GAO Z, GAO Z, ZHANG H, et al. Targeting STING: from antiviral immunity to treat osteoporosis[J]. Front Immunol, 2022, 13: 1095577.
10 MUIRE P J, LOFGREN A L, SHIELS S M, et al. Fracture healing in a polytrauma rat model is influenced by mtDNA: cgas complex mediated pro-inflammation[J]. J Exp Orthop, 2023, 10(1): 90.
11 HUANG L, LU S Y, BIAN M X, et al. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway[J]. Exp Cell Res, 2023, 430(1): 113717.
12 ARTHUR A, GRONTHOS S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J Mol Sci, 2020, 21(24): E97599759.
13 LIN B H, MA R X, WU J T, et al. Cinnamaldehyde alleviates bone loss by targeting oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in BMSCs and ovariectomized mice[J]. J Agric Food Chem, 2023, 71(45): 17362-17378.
14 HE Z, SUN C, MA Y, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel[J]. Adv Mater, 2024, 36(9): e2306552.
15 JOMOVA K, ALOMAR S Y, ALWASEL S H, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants[J]. Arch Toxicol, 2024, 98(5): 1323-1367.
16 EL-FIQI A, ALLAM R, KIM H W. Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties[J]. Colloids Surf B Biointerfaces, 2021, 206: 111932.
17 PESARAKLOU A, MATIN M M. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior[J]. Nanomedicine (Lond), 2020, 15(17): 1709-1718.
18 TU C X, LU H D, ZHOU T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J]. Biomaterials, 2022, 286: 121597.
19 JUNEJO B, SOLANGI Q A, THANI A S B, et al. Physical properties and pharmacological applications of Co3O4, CuO, NiO and ZnO nanoparticles[J]. World J Microbiol Biotechnol, 2023, 39(8): 220.
20 FU Y, CUI S, LUO D, et al. Novel inorganic nanomaterial-based therapy for bone tissue regeneration[J]. Nanomaterials (Basel), 2021, 11(3): 789.
21 RASOOL N, NEGI D, SINGH Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis[J]. ACS Biomater Sci Eng, 2023, 9(6): 3535-3545.
22 TAO Z S, LI T L, YANG M, et al. Silibinin can promote bone regeneration of selenium hydrogel by reducing the oxidative stress pathway in ovariectomized rats[J]. Calcif Tissue Int, 2022, 110(6): 723-735.
23 LEE S C, LEE N H, PATEL K D, et al. The effect of selenium nanoparticles on the osteogenic differentiation of MC3T3-E1 cells[J]. Nanomaterials (Basel), 2021, 11(2): 557.
24 CHENG W, WEN J. Now and future: development and perspectives of using polyphenol nanomaterials in environmental pollution control[J]. Coordin Chem Rev, 2022, 473: 214825.
25 ALCALDE B, GRANADOS M, SAURINA J. Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods[J]. Antioxidants (Basel), 2019, 8(11): E523.
26 CARUSO F, INCERPI S, PEDERSEN J, et al. Aromatic polyphenol π-π interactions with superoxide radicals contribute to radical scavenging and can make polyphenols mimic superoxide dismutase activity[J]. Curr Issues Mol Biol, 2022, 44(11): 5209-5220.
27 GUO Q, YANG S, NI G, et al. The preparation and effects of organic-inorganic antioxidative biomaterials for bone repair[J]. Biomedicines, 2023, 12(1): 70.
28 XU Z, WANG T, LIU J. Recent development of polydopamine anti-bacterial nanomaterials[J]. Int J Mol Sci, 2022, 23(13): 7278.
29 WU H, ZHAO C, LIN K, et al. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation[J]. Front Bioeng Biotechnol, 2022, 10: 952500.
30 MAVRIDI-PRINTEZI A, GIORDANI S, MENICHETTI A, et al. The dual nature of biomimetic melanin[J]. Nanoscale, 2024, 16(1): 299-308.
31 JODKO-PIóRECKA K, SIKORA B, KLUZEK M, et al. Antiradical activity of dopamine, L-DOPA, adrenaline, and noradrenaline in water/methanol and in liposomal systems[J]. J Org Chem, 2022, 87(3): 1791-1804.
32 HUANG Y Q, DU Z Y, LI K, et al. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration[J]. Adv Fiber Mater, 2022, 4(4): 894-907.
33 HANG R, ZHAO Y, ZHANG Y, et al. The role of nanopores constructed on the micropitted titanium surface in the immune responses of macrophages and the potential mechanisms[J]. J Mater Chem B, 2022, 10(38): 7732-7743.
34 LAO A, WU J, LI D, et al. Functionalized metal-organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J]. Small, 2023, 19(36): e2206919.
35 LIU Z, WANG T, ZHANG L, et al. Metal-phenolic networks-reinforced extracellular matrix scaffold for bone regeneration via combining radical-scavenging and photo-responsive regulation of microenvironment[J]. Adv Healthc Mater, 2024, 13(15): e2304158.
36 ZHOU T, YAN L, XIE C, et al. A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly[J]. Small, 2019, 15(25): e1805440.
37 YANG R, YAN Y R, WU Z, et al. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway[J]. Mater Sci Eng C, 2021, 131: 112513.
38 LI C, WANG Q, GU X, et al. Porous Se@SiO2 nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model[J]. Int J Nanomedicine, 2019, 14: 3845-3860.
39 HUANG L, ZHANG S H, BIAN M X, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect[J]. Acta Biomater, 2024, 180: 82-103.
40 WU Q, HU L, YAN R, et al. Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration[J]. Bone Res, 2022, 10(1): 55.
41 BOUCHEZ C, DEVIN A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway[J]. Cells, 2019, 8(4): E287.
42 HUANG J Y, LI R Q, YANG J H, et al. Bioadaptation of implants to in vitro and in vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration[J]. Bioact Mater, 2021, 6(10): 3164-3176.
43 LI J M, DENG C J, LIANG W Y, et al. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS[J]. Bioact Mater, 2021, 6(11): 3839-3850.
44 DENG Q S, LI X R, LIU P L, et al. 3D cryo-printed hierarchical porous scaffolds harmonized with hybrid nanozymes for combinatorial mitochondrial therapy: enhanced diabetic bone regeneration viamicromilieu remodeling[J]. Adv Funct Mater, 2024, 34(39): 2403145.
45 SHU C, QIN C, WU A, et al. 3D printing of cobalt-incorporated chloroapatite bioceramic composite scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Healthc Mater, 2024, 13(13): e2303217.
46 XIE Y, XIAO S, HUANG L, et al. Cascade and ultrafast artificial antioxidases alleviate inflammation and bone resorption in periodontitis[J]. ACS Nano, 2023, 17(15): 15097-15112.
47 SHU C, QIN C, CHEN L, et al. Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Sci (Weinh), 2023, 10(13): e2206875.
48 TIAN Q, WANG W, CAO L, et al. Multifaceted catalytic ROS-scavenging via electronic modulated metal oxides for regulating stem cell fate[J]. Adv Mater, 2022, 34(43): e2207275.
49 DING Y, MA R, LIU G, et al. Fabrication of a new hyaluronic acid/gelatin nanocomposite hydrogel coating on titanium-based implants for treating biofilm infection and excessive inflammatory response[J]. ACS Appl Mater Interfaces, 2023, 15(10): 13783-13801.
Outlines

/