Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (4): 487-492.doi: 10.3969/j.issn.1674-8115.2025.04.011
• Review • Previous Articles Next Articles
LU Jiayi1,2, LIU Jinzhe1,2, GUO Shangchun1,3,4, TAO Shicong1,3()
Received:
2024-10-10
Accepted:
2024-12-10
Online:
2025-04-28
Published:
2025-04-21
Contact:
TAO Shicong
E-mail:sctao@shsmu.edu.cn
Supported by:
CLC Number:
LU Jiayi, LIU Jinzhe, GUO Shangchun, TAO Shicong. Advances in nanomaterials for promoting bone tissue regeneration by reducing reactive oxygen species levels[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(4): 487-492.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2025.04.011
1 | YUDOH K, SUGISHITA Y, SUZUKI-TAKAHASHI Y. Bone development and regeneration 2.0[J]. Int J Mol Sci, 2023, 24(10): 8761. |
2 | SAHOO B M, BANIK B K, BORAH P, et al. Reactive oxygen species (ROS): key components in cancer therapies[J]. Anticancer Agents Med Chem, 2022, 22(2): 215-222. |
3 | BOTTJE W G. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria[J]. Poult Sci, 2019, 98(10): 4223-4230. |
4 | ZHAO R Z, JIANG S, ZHANG L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review)[J]. Int J Mol Med, 2019, 44(1): 3-15. |
5 | LI Z M, ZHAO T F, DING J, et al. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury[J]. Bioact Mater, 2023, 19: 550-568. |
6 | GUO Y, GUAN T, SHAFIQ K, et al. Mitochondrial dysfunction in aging[J]. Ageing Res Rev, 2023, 88: 101955. |
7 | SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031. |
8 | ZHOU L, ZHANG Y F, YANG F H, et al. Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway[J]. Cell Commun Signal, 2021, 19(1): 58. |
9 | GAO Z, GAO Z, ZHANG H, et al. Targeting STING: from antiviral immunity to treat osteoporosis[J]. Front Immunol, 2022, 13: 1095577. |
10 | MUIRE P J, LOFGREN A L, SHIELS S M, et al. Fracture healing in a polytrauma rat model is influenced by mtDNA: cgas complex mediated pro-inflammation[J]. J Exp Orthop, 2023, 10(1): 90. |
11 | HUANG L, LU S Y, BIAN M X, et al. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway[J]. Exp Cell Res, 2023, 430(1): 113717. |
12 | ARTHUR A, GRONTHOS S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J Mol Sci, 2020, 21(24): E97599759. |
13 | LIN B H, MA R X, WU J T, et al. Cinnamaldehyde alleviates bone loss by targeting oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in BMSCs and ovariectomized mice[J]. J Agric Food Chem, 2023, 71(45): 17362-17378. |
14 | HE Z, SUN C, MA Y, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel[J]. Adv Mater, 2024, 36(9): e2306552. |
15 | JOMOVA K, ALOMAR S Y, ALWASEL S H, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants[J]. Arch Toxicol, 2024, 98(5): 1323-1367. |
16 | EL-FIQI A, ALLAM R, KIM H W. Antioxidant cerium ions-containing mesoporous bioactive glass ultrasmall nanoparticles: structural, physico-chemical, catalase-mimic and biological properties[J]. Colloids Surf B Biointerfaces, 2021, 206: 111932. |
17 | PESARAKLOU A, MATIN M M. Cerium oxide nanoparticles and their importance in cell signaling pathways for predicting cellular behavior[J]. Nanomedicine (Lond), 2020, 15(17): 1709-1718. |
18 | TU C X, LU H D, ZHOU T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties[J]. Biomaterials, 2022, 286: 121597. |
19 | JUNEJO B, SOLANGI Q A, THANI A S B, et al. Physical properties and pharmacological applications of Co3O4, CuO, NiO and ZnO nanoparticles[J]. World J Microbiol Biotechnol, 2023, 39(8): 220. |
20 | FU Y, CUI S, LUO D, et al. Novel inorganic nanomaterial-based therapy for bone tissue regeneration[J]. Nanomaterials (Basel), 2021, 11(3): 789. |
21 | RASOOL N, NEGI D, SINGH Y. Thiol-functionalized, antioxidant, and osteogenic mesoporous silica nanoparticles for osteoporosis[J]. ACS Biomater Sci Eng, 2023, 9(6): 3535-3545. |
22 | TAO Z S, LI T L, YANG M, et al. Silibinin can promote bone regeneration of selenium hydrogel by reducing the oxidative stress pathway in ovariectomized rats[J]. Calcif Tissue Int, 2022, 110(6): 723-735. |
23 | LEE S C, LEE N H, PATEL K D, et al. The effect of selenium nanoparticles on the osteogenic differentiation of MC3T3-E1 cells[J]. Nanomaterials (Basel), 2021, 11(2): 557. |
24 | CHENG W, WEN J. Now and future: development and perspectives of using polyphenol nanomaterials in environmental pollution control[J]. Coordin Chem Rev, 2022, 473: 214825. |
25 | ALCALDE B, GRANADOS M, SAURINA J. Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods[J]. Antioxidants (Basel), 2019, 8(11): E523. |
26 | CARUSO F, INCERPI S, PEDERSEN J, et al. Aromatic polyphenol π-π interactions with superoxide radicals contribute to radical scavenging and can make polyphenols mimic superoxide dismutase activity[J]. Curr Issues Mol Biol, 2022, 44(11): 5209-5220. |
27 | GUO Q, YANG S, NI G, et al. The preparation and effects of organic-inorganic antioxidative biomaterials for bone repair[J]. Biomedicines, 2023, 12(1): 70. |
28 | XU Z, WANG T, LIU J. Recent development of polydopamine anti-bacterial nanomaterials[J]. Int J Mol Sci, 2022, 23(13): 7278. |
29 | WU H, ZHAO C, LIN K, et al. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation[J]. Front Bioeng Biotechnol, 2022, 10: 952500. |
30 | MAVRIDI-PRINTEZI A, GIORDANI S, MENICHETTI A, et al. The dual nature of biomimetic melanin[J]. Nanoscale, 2024, 16(1): 299-308. |
31 | JODKO-PIÓRECKA K, SIKORA B, KLUZEK M, et al. Antiradical activity of dopamine, L-DOPA, adrenaline, and noradrenaline in water/methanol and in liposomal systems[J]. J Org Chem, 2022, 87(3): 1791-1804. |
32 | HUANG Y Q, DU Z Y, LI K, et al. ROS-scavenging electroactive polyphosphazene-based core-shell nanofibers for bone regeneration[J]. Adv Fiber Mater, 2022, 4(4): 894-907. |
33 | HANG R, ZHAO Y, ZHANG Y, et al. The role of nanopores constructed on the micropitted titanium surface in the immune responses of macrophages and the potential mechanisms[J]. J Mater Chem B, 2022, 10(38): 7732-7743. |
34 | LAO A, WU J, LI D, et al. Functionalized metal-organic framework-modified hydrogel that breaks the vicious cycle of inflammation and ROS for repairing of diabetic bone defects[J]. Small, 2023, 19(36): e2206919. |
35 | LIU Z, WANG T, ZHANG L, et al. Metal-phenolic networks-reinforced extracellular matrix scaffold for bone regeneration via combining radical-scavenging and photo-responsive regulation of microenvironment[J]. Adv Healthc Mater, 2024, 13(15): e2304158. |
36 | ZHOU T, YAN L, XIE C, et al. A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly[J]. Small, 2019, 15(25): e1805440. |
37 | YANG R, YAN Y R, WU Z, et al. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway[J]. Mater Sci Eng C, 2021, 131: 112513. |
38 | LI C, WANG Q, GU X, et al. Porous Se@SiO2 nanocomposite promotes migration and osteogenic differentiation of rat bone marrow mesenchymal stem cell to accelerate bone fracture healing in a rat model[J]. Int J Nanomedicine, 2019, 14: 3845-3860. |
39 | HUANG L, ZHANG S H, BIAN M X, et al. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect[J]. Acta Biomater, 2024, 180: 82-103. |
40 | WU Q, HU L, YAN R, et al. Strontium-incorporated bioceramic scaffolds for enhanced osteoporosis bone regeneration[J]. Bone Res, 2022, 10(1): 55. |
41 | BOUCHEZ C, DEVIN A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway[J]. Cells, 2019, 8(4): E287. |
42 | HUANG J Y, LI R Q, YANG J H, et al. Bioadaptation of implants to in vitro and in vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration[J]. Bioact Mater, 2021, 6(10): 3164-3176. |
43 | LI J M, DENG C J, LIANG W Y, et al. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS[J]. Bioact Mater, 2021, 6(11): 3839-3850. |
44 | DENG Q S, LI X R, LIU P L, et al. 3D cryo-printed hierarchical porous scaffolds harmonized with hybrid nanozymes for combinatorial mitochondrial therapy: enhanced diabetic bone regeneration viamicromilieu remodeling[J]. Adv Funct Mater, 2024, 34(39): 2403145. |
45 | SHU C, QIN C, WU A, et al. 3D printing of cobalt-incorporated chloroapatite bioceramic composite scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Healthc Mater, 2024, 13(13): e2303217. |
46 | XIE Y, XIAO S, HUANG L, et al. Cascade and ultrafast artificial antioxidases alleviate inflammation and bone resorption in periodontitis[J]. ACS Nano, 2023, 17(15): 15097-15112. |
47 | SHU C, QIN C, CHEN L, et al. Metal-organic framework functionalized bioceramic scaffolds with antioxidative activity for enhanced osteochondral regeneration[J]. Adv Sci (Weinh), 2023, 10(13): e2206875. |
48 | TIAN Q, WANG W, CAO L, et al. Multifaceted catalytic ROS-scavenging via electronic modulated metal oxides for regulating stem cell fate[J]. Adv Mater, 2022, 34(43): e2207275. |
49 | DING Y, MA R, LIU G, et al. Fabrication of a new hyaluronic acid/gelatin nanocomposite hydrogel coating on titanium-based implants for treating biofilm infection and excessive inflammatory response[J]. ACS Appl Mater Interfaces, 2023, 15(10): 13783-13801. |
[1] | WANG Liyang, XUE Wei. Research progress on the role of oxidative stress in the development of diabetic bladder dysfunction [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 241-246. |
[2] | LU Yuhan, SHI Yahong, LONG Manmei, WANG Zi, WU Yingwei. Effect of ceria nanoparticles on activity of DSS-induced colitis in mice by eliminating active oxygen species [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(1): 35-42. |
[3] | WU Jing, ZHAO Zhengyi, ZOU Duohong, YANG Chi, ZHANG Zhiyuan. Application of a tent-pole screw technology in reconstruction of severe alveolar bone defect: a retrospective study of 30 patients [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(6): 768-777. |
[4] | Qing WANG, Wei WANG, Da-jun JIANG, Wei-tao JIA. Evaluation of JDBM porous scaffold coated with DCPD in promoting angiogenesis and repairing bone defects [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 732-740. |
[5] | Ya-zhong WEI, Xiao-mei XUE, Bin HE. Research progress in myocardial ischemia-reperfusion injury mediated by mitochondrial reactive oxygen species [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(6): 826-829. |
[6] | CHEN Mo, CHEN Jun, CHEN Shi-yi. Advances in second near-infrared fluorescent nanoprobes-based in vivo imaging for biomedical applications [J]. , 2020, 40(4): 530-. |
[7] | LI Yuan, SHI Jun-yu, ZHANG Xiao, LAI Hong-chang. Correlation between the morphology of alveolar bone defect in the maxillary anterior region and the outcome of guided bone regeneration [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(10): 1414-1419. |
[8] | ZHUANG Ling-fang, CHEN Kang. Regulating effect of fatty acid binding protein 3 on survival and apoptosis of cardiomyocytes under hypoxia [J]. , 2019, 39(6): 586-. |
[9] | WANG Hong-mei,FU Jian-liang,ZHANG Ting,CHEN Jing-jiong,ZHAO Yu-wu. Inhibition of genistein against LPS-induced proinflammatory response in microglia [J]. , 2019, 39(5): 446-. |
[10] | LIU Xin-ying, LU Wen-qing, SHEN Xin-xin, MA Rui -xiang, LIU Peng-yi, MA Jiao. Recent advances in the role of SIRT3 in leukemia drug resistance [J]. , 2019, 39(3): 331-. |
[11] | WU Di, QI Jun. Advances in the mesoporous silica-based reactive oxygen species controlled-release nanosystem and its anti-tumor application [J]. , 2019, 39(11): 1329-. |
[12] | ZHENG Ying, XIAO Xin-yi, YANG Zhuo-yi, ZHOU Mei-qi, CHEN Hui, YUAN Yun-sheng. Protective effect of recombinant human IL-1Ra on hepatocytes in vitro [J]. , 2019, 39(10): 1115-. |
[13] | LI Qi1, ZHOU Xiang-dong1, ZENG Man1, Victor P. KOLOSOV2, Juliy M. PERELMAN2. Role of inositol-requiring kinase 1α/X-box binding protein 1 in airway mucus secretion inducedneutrophil elastase [J]. , 2019, 39(1): 21-. |
[14] | CHENG Ruo-yu, YAN Yu-fei, CHEN Hao, QI Jin, DENG Lian-fu, CUI Wen-guo. Fabrication of dual-functional organic/inorganic osteogenetic hydrogel for bone regeneration [J]. , 2018, 38(8): 900-. |
[15] | WANG Qiao-ling1*, CHEN Xiao-huan2*, NI Zhao-hui1, GU Le-yi1, XU Chen-qi1, DAI Hui-li1. Fructose induces HK-2 cells to express monocyte chemoattractant protein-1 through uric acid andreactive oxygen species [J]. , 2018, 38(4): 386-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||