Journal of Shanghai Jiao Tong University (Medical Science) ›› 2025, Vol. 45 ›› Issue (2): 241-246.doi: 10.3969/j.issn.1674-8115.2025.02.014
• Review • Previous Articles
Received:
2024-04-03
Accepted:
2024-05-15
Online:
2025-02-28
Published:
2025-02-28
Contact:
XUE Wei
E-mail:wangliyang9803@163.com;xuewei@renji.com
Supported by:
CLC Number:
WANG Liyang, XUE Wei. Research progress on the role of oxidative stress in the development of diabetic bladder dysfunction[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2025, 45(2): 241-246.
1 | SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. |
2 | NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1 108 population-representative studies with 141 million participants[J]. Lancet, 2024, 404(10467): 2077-2093. |
3 | WILLIAMS R, KARURANGA S, MALANDA B, et al. Global and regional estimates and projections of diabetes-related health expenditure: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2020, 162: 108072. |
4 | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4): 315-409. |
Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)[J]. Chinese Journal of Diabetes Mellitus, 2021, 13(4): 315-409. | |
5 | TOMIC D, SHAW J E, MAGLIANO D J. The burden and risks of emerging complications of diabetes mellitus[J]. Nat Rev Endocrinol, 2022, 18(9): 525-539. |
6 | LIU G, DANESHGARI F. Diabetic bladder dysfunction[J]. Chin Med J (Engl), 2014, 127(7): 1357-1364. |
7 | WITTIG L, CARLSON K V, MATTHEW ANDREWS J, et al. Diabetic bladder dysfunction: a review[J]. Urology, 2019, 123: 1-6. |
8 | DANESHGARI F, LIU G M, BIRDER L, et al. Diabetic bladder dysfunction: current translational knowledge[J]. J Urol, 2009, 182(6 Suppl): S18-S26. |
9 | DOS SANTOS J M, TEWARI S, MENDES R H. The role of oxidative stress in the development of diabetes mellitus and its complications[J]. J Diabetes Res, 2019, 2019: 4189813. |
10 | SONG Q X, SUN Y, DENG K L, et al. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction[J]. Nat Rev Urol, 2022, 19(10): 581-596. |
11 | MOCHIDA N, MATSUMURA Y, KITABATAKE M, et al. Antioxidant potential of non-extractable fractions of dried persimmon (Diospyros kaki Thunb.) in streptozotocin-induced diabetic rats[J]. Antioxidants (Basel), 2022, 11(8): 1555. |
12 | BROWNLEE M. The pathobiology of diabetic complications: a unifying mechanism[J]. Diabetes, 2005, 54(6): 1615-1625. |
13 | BHATTI J S, SEHRAWAT A, MISHRA J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: current therapeutics strategies and future perspectives[J]. Free Radic Biol Med, 2022, 184: 114-134. |
14 | PAPACHRISTOFOROU E, LAMBADIARI V, MARATOU E, et al. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications[J]. J Diabetes Res, 2020, 2020: 7489795. |
15 | CAO N L, GU B J, GOTOH D, et al. Time-dependent changes of urethral function in diabetes mellitus: a review[J]. Int Neurourol J, 2019, 23(2): 91-99. |
16 | MERRILL L, GONZALEZ E J, GIRARD B M, et al. Receptors, channels, and signalling in the urothelial sensory system in the bladder[J]. Nat Rev Urol, 2016, 13(4): 193-204. |
17 | BOLGEO T, MACONI A, BERTOLOTTI M, et al. Physiopathology of the diabetic bladder[J]. Arch Ital Urol Androl, 2020, 92(4). DOI: 10.4081/aiua.2020.4.314. |
18 | KAROLI R, BHAT S, FATIMA J, et al. A study of bladder dysfunction in women with type 2 diabetes mellitus[J]. Indian J Endocrinol Metab, 2014, 18(4): 552-557. |
19 | KELLY M S, ROUTH J C, DAVIS L G, et al. Lower urinary tract symptoms in older children with and without diabetes mellitus[J]. Clin Pediatr (Phila), 2018, 57(13): 1576-1581. |
20 | KLEE N S, MCCARTHY C G, LEWIS S, et al. Urothelial senescence in the pathophysiology of diabetic bladder dysfunction: a novel hypothesis[J]. Front Surg, 2018, 5: 72. |
21 | HANNA-MITCHELL A T, RUIZ G W, DANESHGARI F, et al. Impact of diabetes mellitus on bladder uroepithelial cells[J]. Am J Physiol Regul Integr Comp Physiol, 2013, 304(2): R84-R93. |
22 | HARKIN C, COBICE D, WATT J, et al. Analysis of reactive aldehydes in urine and plasma of type-2 diabetes mellitus patients through liquid chromatography-mass spectrometry: reactive aldehydes as potential markers of diabetic nephropathy[J]. Front Nutr, 2023, 9: 997015. |
23 | OLIVEIRA A L, MEDEIROS M L, GOMES E T, et al. TRPA1 channel mediates methylglyoxal-induced mouse bladder dysfunction[J]. Front Physiol, 2023, 14: 1308077. |
24 | WANG Y, DENG G G, DAVIES K P. Novel insights into development of diabetic bladder disorder provided by metabolomic analysis of the rat nondiabetic and diabetic detrusor and urothelial layer[J]. Am J Physiol Endocrinol Metab, 2016, 311(2): E471-E479. |
25 | TOMECHKO S E, LIU G M, TAO M F, et al. Tissue specific dysregulated protein subnetworks in type 2 diabetic bladder urothelium and detrusor muscle[J]. Mol Cell Proteomics, 2015, 14(3): 635-645. |
26 | LIU Y Y, WANG X, WANG L Y, et al. Platelet-to-lymphocyte ratio predicts the presence of diabetic neurogenic bladder[J]. Diabetes Metab Syndr Obes, 2022, 15: 7-13. |
27 | HUGHES F M Jr, ALLKANJARI A, ODOM M R, et al. Diabetic bladder dysfunction progresses from an overactive to an underactive phenotype in a type-1 diabetic mouse model (Akita female mouse) and is dependent on NLRP3[J]. Life Sci, 2022, 299: 120528. |
28 | WU Q G, QIN B, WU X Y, et al. Allograft inflammatory factor-1 enhances inflammation and oxidative stress via the NF-κB pathway of bladder urothelium in diabetic rat model[J]. Cytokine, 2024, 173: 156438. |
29 | CHANGOLKAR A K, HYPOLITE J A, DISANTO M, et al. Diabetes induced decrease in detrusor smooth muscle force is associated with oxidative stress and overactivity of aldose reductase[J]. J Urol, 2005, 173(1): 309-313. |
30 | BESHAY E, CARRIER S. Oxidative stress plays a role in diabetes-induced bladder dysfunction in a rat model[J]. Urology, 2004, 64(5): 1062-1067. |
31 | WANG J W, DAI L Y, YUE X F, et al. IR-61 improves voiding function via mitochondrial protection in diabetic rats[J]. Front Pharmacol, 2021, 12: 608637. |
32 | ELRASHIDY R A, KAVRAN M, ASKER M E, et al. Smooth muscle-specific deletion of MnSOD exacerbates diabetes-induced bladder dysfunction in mice[J]. Am J Physiol Renal Physiol, 2019, 317(4): F906-F912. |
33 | KWON M H, CHOI M J, LIU F Y, et al. Functional and immunofluorescence evaluations of vascular and neural integrities in urinary bladder of streptozotocin-induced diabetic mice[J]. Int Neurourol J, 2022, 26(3): 201-209. |
34 | OCHODNICKÝ P, CRUZ C D, YOSHIMURA N, et al. Nerve growth factor in bladder dysfunction: contributing factor, biomarker, and therapeutic target[J]. Neurourol Urodyn, 2011, 30(7): 1227-1241. |
35 | MOSSA A H, GALAN A, CAMMISOTTO P G, et al. Antagonism of proNGF or its receptor p75NTR reverses remodelling and improves bladder function in a mouse model of diabetic voiding dysfunction[J]. Diabetologia, 2020, 63(9): 1932-1946. |
36 | DING L C, SONG T, YI C R, et al. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP[J]. PLoS One, 2013, 8(2): e57477. |
37 | LIU Y D, ZHANG S C, XUE J, et al. CGRP reduces apoptosis of DRG cells induced by high-glucose oxidative stress injury through PI3K/AKT induction of heme oxygenase-1 and Nrf-2 expression[J]. Oxid Med Cell Longev, 2019, 2019: 2053149. |
38 | ZHANG P J, LI T, WU X Y, et al. Oxidative stress and diabetes: antioxidative strategies[J]. Front Med, 2020, 14(5): 583-600. |
39 | TSOUNAPI P, HONDA M, HIKITA K, et al. Oxidative stress alterations in the bladder of a short-period type 2 diabetes rat model: antioxidant treatment can be beneficial for the bladder[J]. In Vivo, 2019, 33(6): 1819-1826. |
40 | LADDHA A P, KULKARNI Y A. Daidzein attenuates urinary bladder dysfunction in streptozotocin-induced diabetes in rats by NOX-4 and RAC-1 inhibition[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(8): 975-986. |
41 | LIN C F, CHUEH T H, CHUNG C H, et al. Sulforaphane improves voiding function via the preserving mitochondrial function in diabetic rats[J]. J Formos Med Assoc, 2020, 119(9): 1422-1430. |
42 | HUANG Y, GAO J, ZHOU Y D, et al. Therapeutic effect of integrin-linked kinase gene-modified bone marrow-derived mesenchymal stem cells for streptozotocin-induced diabetic cystopathy in a rat model[J]. Stem Cell Res Ther, 2020, 11(1): 278. |
43 | FAN K, YUAN S Y, ZHOU M, et al. Enhanced biohomogeneous composite membrane-encapsulated nanoplatform with podocyte targeting for precise and safe treatment of diabetic nephropathy[J]. ACS Nano, 2023, 17(18): 18037-18054. |
44 | MOHAMED A A, KHATER S I, HAMED ARISHA A, et al. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway[J]. Gene, 2021, 768: 145288. |
45 | ZHANG Q, SONG W, ZHAO B J, et al. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro[J]. Front Neurosci, 2021, 15: 636172. |
46 | YAO Y X, LEI X Y, WANG Y, et al. A mitochondrial nanoguard modulates redox homeostasis and bioenergy metabolism in diabetic peripheral neuropathy[J]. ACS Nano, 2023, 17(22): 22334-22354. |
47 | CHEN Y, YANG X R, LI K, et al. Phenolic ligand-metal charge transfer induced copper nanozyme with reactive oxygen species-scavenging ability for chronic wound healing[J]. ACS Nano, 2024, 18(9): 7024-7036. |
48 | DE OLIVEIRA M G, DE MEDEIROS M L, TAVARES E B G, et al. Methylglyoxal, a reactive glucose metabolite, induces bladder overactivity in addition to inflammation in mice[J]. Front Physiol, 2020, 11: 290. |
[1] | CHEN Minghao, LIU Peiyu, WANG Xuan, WU Yixiang, JIANG Yujin, ZHANG Chaoyang, ZHANG Jingfa. Advances in drug therapy of diabetic retinopathy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(7): 822-829. |
[2] | ZENG Dejie, CHEN Zenghui, DING Qiankun, SUN Xiaqing, SUN Qi, ZHAO Shibing. Prospect of naturally derived polysaccharides in intervention in neurodevelopmental disorders [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2024, 44(6): 779-787. |
[3] | JIA Junjie, XING Haifan, ZHANG Qunzi, LIU Qiye, WANG Niansong, FAN Ying. Renal protective effect and mechanism research of hypoxia inducible factor-1α inhibitor YC-1 in diabetic nephropathy mice [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(9): 1089-1098. |
[4] | JIN Fangquan, FAN Chenghu, TANG Xiaodong, CHEN Yantong, QI Bingxian. Research progress in the relationship between mitochondrial dysfunction and osteoporosis [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(6): 761-767. |
[5] | LU Ruoyu, KANG Wenhui, ZHAO Anda, LU Zhaohui, LI Shenghui. Research progress on the association between melatonin and hypertensive disorder complicating pregnancy [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(10): 1297-1303. |
[6] | ZHAO Jiuhong, TONG Jiating, SHEN Zhijun, LÜ Yehui. Research progress in the mechanism of interactive regulation between circular RNA and oxidative stress [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 393-399. |
[7] | SUN Jinli, SONG Weiwei, XU Ming, LI Jingquan. Oxidative damage and malignant migration of hepatocellular carcinoma cells LM3 induced by 14 weeks exposure to sodium arsenite [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(12): 1677-1684. |
[8] | Jiu-ang MAO, Zhen WENG, Xiao-yin NIU, Yang HE, Zhen-xin WANG. Role of Tmprss6 gene in radiation-induced intestinal injury of mice [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1175-1182. |
[9] | Run-ze YANG, Wen-ning XU, Huo-liang ZHENG, Sheng-dan JIANG. Effects of exosomes derived from human umbilical vein endothelial cells on apoptosis of pre-chondrogenic cells stimulated by inflammatory factors [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 147-153. |
[10] | Jing WU, Xue-yi LI, Jing-hong CHEN, Ze-jian WANG. Study on changes of hippocampal bile acid receptors in the depression mouse models [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1628-1634. |
[11] | LU Hai-yang, ZHAO Wei-li. Role of gastrointestinal microbiota in tumorigenesis [J]. , 2019, 39(9): 1083-. |
[12] | YANG Shuang-shuang1*, GAO Tian-xing2*, HE Xuan1, ZHANG Rui1, ZHANG Yong-fang1. Regulation on brain-derived neurotrophic factor and relevant mechanism of anemarrhena saponin in H2O2-induced SH-SY5Y cells [J]. , 2019, 39(6): 578-. |
[13] | WANG Hao1*, JIANG Shan1*, GONG Yang-ming2, LIU Yan3, HUA Li1, DENG Xiao-bei1. Atmospheric fine particulate matter causing Alzheimers disease through olfactory bulb pathway: a review of recent studies [J]. , 2019, 39(6): 666-. |
[14] | WANG Ying-yi,LU Yan-hua,GENG Rui-jie,CHENG Xiao-yan,HUANG Xin-xin,Lü Qin-yu,YING Qi-ang,YI Zheng-hui. Effect of lithium carbonate on oxidative stress in patients with bipolar disorder [J]. , 2019, 39(5): 494-. |
[15] | ZHANG Jing-jing, ZHOU Yi-jun, HU Yi, SHI Rong, ZHANG Yan, TIAN Ying, GAO Yu. Effects of fenvalerate exposure during puberty on oxidative stress in male rat testis [J]. , 2018, 38(2): 133-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||