Journal of Shanghai Jiao Tong University (Medical Science) ›› 2022, Vol. 42 ›› Issue (3): 393-399.doi: 10.3969/j.issn.1674-8115.2022.03.020
• Review • Previous Articles
ZHAO Jiuhong(), TONG Jiating(), SHEN Zhijun, LÜ Yehui()
Received:
2021-10-11
Online:
2022-03-28
Published:
2022-05-09
Contact:
Lü Yehui
E-mail:zhaojh@sumhs.edu.cn;1837127618@qq.com;lvyh_15@sumhs.edu.cn
Supported by:
CLC Number:
ZHAO Jiuhong, TONG Jiating, SHEN Zhijun, LÜ Yehui. Research progress in the mechanism of interactive regulation between circular RNA and oxidative stress[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 393-399.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2022.03.020
Type | Marker | Abbreviation | Trend |
---|---|---|---|
Superoxide dismutase | SOD | ↓ | |
Glutathione peroxidase | GSH-Px | ↓ | |
Inducible nitric oxide synthase | iNOS | ↑ | |
Catalase | CAT | ↓ | |
Intermediate product | Reactive oxygen species | ROS | ↑ |
Nitric oxide | NO | ↑ | |
Oxidized glutathione | GSSG | ↑ | |
3-Nitrotyrosine | 3-NT | ↑ | |
End product | 8-Hydroxy-2-deoxyguanosine | 8-OHdG | ↑ |
Malondialdehyde | MDA | ↑ |
Tab 1 Commonly used oxidative stress markers in present studies
Type | Marker | Abbreviation | Trend |
---|---|---|---|
Superoxide dismutase | SOD | ↓ | |
Glutathione peroxidase | GSH-Px | ↓ | |
Inducible nitric oxide synthase | iNOS | ↑ | |
Catalase | CAT | ↓ | |
Intermediate product | Reactive oxygen species | ROS | ↑ |
Nitric oxide | NO | ↑ | |
Oxidized glutathione | GSSG | ↑ | |
3-Nitrotyrosine | 3-NT | ↑ | |
End product | 8-Hydroxy-2-deoxyguanosine | 8-OHdG | ↑ |
Malondialdehyde | MDA | ↑ |
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
H2O2 | ‒ | circNCX1 | ↑ | miR-133a-3p↓; CDIP1↑ | Pro-apoptotic | [ |
H2O2 | ‒ | circHIPK2 | ↑ | miR-485-5p↓; ATG101↑ | Pro-apoptotic | [ |
ox-LDL | ROS, SOD, MDA, iNOS | circTM7SF3 circ_0007478 | ↑ | miR-206↓; ASPH, TNF-α, IL-6↑ | Pro-inflammatory Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circBPTF | ↑ | miR-384↓; LIN28B, TNF-α, IL-6, IL-1β, Bax, caspase3↑ | Pro-inflammatory Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, iNOS | circHIPK3 | ↑ | TNF-α, IL-6, Bax, CK-MB↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA | circB4GALT2 circ_0000064 | ↓ | CK-MB, Bax, caspase3↑ | Pro-apoptotic | [ |
ox-LDL | SOD, MDA | circSMARCA5 circ_0001445 | ↓ | miR-640↑; TNF-α, IL-6, IL-β, Bax, caspase3↑ | Anti-inflammatory Anti-apoptotic | [ |
ox-LDL | ‒ | circRSF1 circ_0000345 | ↓ | miR-758↑; CCND2↓; Bax, HIF-1α↑ | Anti-apoptotic | [ [ |
ox-LDL | ‒ | circCHFR circ_0029589 | ↑ | miR-424-5p↓; IGF-2↑ | Anti-apoptotic | [ |
Tab 2 Regulatory mechanism of circRNA expression under oxidative stress in cardiovascular diseases
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
H2O2 | ‒ | circNCX1 | ↑ | miR-133a-3p↓; CDIP1↑ | Pro-apoptotic | [ |
H2O2 | ‒ | circHIPK2 | ↑ | miR-485-5p↓; ATG101↑ | Pro-apoptotic | [ |
ox-LDL | ROS, SOD, MDA, iNOS | circTM7SF3 circ_0007478 | ↑ | miR-206↓; ASPH, TNF-α, IL-6↑ | Pro-inflammatory Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circBPTF | ↑ | miR-384↓; LIN28B, TNF-α, IL-6, IL-1β, Bax, caspase3↑ | Pro-inflammatory Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, iNOS | circHIPK3 | ↑ | TNF-α, IL-6, Bax, CK-MB↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA | circB4GALT2 circ_0000064 | ↓ | CK-MB, Bax, caspase3↑ | Pro-apoptotic | [ |
ox-LDL | SOD, MDA | circSMARCA5 circ_0001445 | ↓ | miR-640↑; TNF-α, IL-6, IL-β, Bax, caspase3↑ | Anti-inflammatory Anti-apoptotic | [ |
ox-LDL | ‒ | circRSF1 circ_0000345 | ↓ | miR-758↑; CCND2↓; Bax, HIF-1α↑ | Anti-apoptotic | [ [ |
ox-LDL | ‒ | circCHFR circ_0029589 | ↑ | miR-424-5p↓; IGF-2↑ | Anti-apoptotic | [ |
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
Paraquat | ‒ | circSLC8A1 | ↑ | SLC8A1↓ | Pro-apoptotic | [ |
Glu | ROS | circFoxO3 | ↑ | BimEL, cytochrome, caspase3↑ | Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circASCC3 circ_0006872 | ↑ | miR-145-5p↓; NF-κB↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circANKRD11 | ↑ | miR-145-5p↓; Bax, caspase3, TNF-α, IL-6, IL-β↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | SOD, MDA | circRBMS1 | ↑ | miR-197-3p↓; Bax, TNF-α, IL-β, FBXO11↑ | Pro-inflammatory Pro-apoptotic | [ |
H2O2 | ‒ | circPRKCI | ↓ | miR-545/miR-589↑; E2F7↓; caspase3, caspase9↑ | Anti-apoptotic | [ |
Tab 3 Regulatory mechanism of circRNA expression under oxidative stress in neurological disorders and lung diseases
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
Paraquat | ‒ | circSLC8A1 | ↑ | SLC8A1↓ | Pro-apoptotic | [ |
Glu | ROS | circFoxO3 | ↑ | BimEL, cytochrome, caspase3↑ | Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circASCC3 circ_0006872 | ↑ | miR-145-5p↓; NF-κB↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | ROS, SOD, MDA | circANKRD11 | ↑ | miR-145-5p↓; Bax, caspase3, TNF-α, IL-6, IL-β↑ | Pro-inflammatory Pro-apoptotic | [ |
CSE | SOD, MDA | circRBMS1 | ↑ | miR-197-3p↓; Bax, TNF-α, IL-β, FBXO11↑ | Pro-inflammatory Pro-apoptotic | [ |
H2O2 | ‒ | circPRKCI | ↓ | miR-545/miR-589↑; E2F7↓; caspase3, caspase9↑ | Anti-apoptotic | [ |
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
CLP | ROS, SOD, MDA, GSH, CAT | circTLK1 | ↑ | miR-106a-5p↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA, CAT | circAKT3 | ↑ | miR-144-5p↓; caspase3, Bax ↑ | Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circLRP6 | ↑ | miR-205↓; HMGB1, p-NF‐κB↑ | Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, GSH, CAT | circVMA21 | ↓ | miR-9-3p↑; SMG1↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Anti-inflammatory Anti-apoptotic | [ |
Tab 4 Regulatory mechanism of circRNA expression under oxidative stress in kidney diseases
Pre-treatment | Oxidative stress marker | circRNA | Ref. | |||
---|---|---|---|---|---|---|
ID | Trend | Regulatory mechanism | Function | |||
CLP | ROS, SOD, MDA, GSH, CAT | circTLK1 | ↑ | miR-106a-5p↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Pro-inflammatory Pro-apoptotic | [ |
I/R | SOD, MDA, CAT | circAKT3 | ↑ | miR-144-5p↓; caspase3, Bax ↑ | Pro-apoptotic | [ |
HG | ROS, SOD, MDA | circLRP6 | ↑ | miR-205↓; HMGB1, p-NF‐κB↑ | Pro-apoptotic | [ |
LPS | ROS, SOD, MDA, GSH, CAT | circVMA21 | ↓ | miR-9-3p↑; SMG1↓; TNF-α, IL-6, IL-β, caspase3, Bax↑ | Anti-inflammatory Anti-apoptotic | [ |
1 | SHI Y, JIA X, XU J. The new function of circRNA: translation[J]. Clin Transl Oncol, 2020, 22(12): 2162-2169. |
2 | HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495 (7441): 384-388. |
3 | ABU N, JAMAL R. Circular RNAs as promising biomarkers: a mini-review[J]. Front Physiol, 2016, 7: 355. |
4 | ĎURAČKOVÁ Z. Some current insights into oxidative stress[J]. Physiol Res, 2010, 59(4): 459-469. |
5 | CHEESEMAN K H, SLATER T F. An introduction to free radical biochemistry[J]. Br Med Bull, 1993, 49(3): 481-493. |
6 | PERSSON T, POPESCU B O, CEDAZO-MINGUEZ A. Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail?[J]. Oxid Med Cell Longev, 2014, 2014: 427318. |
7 | COBLEY J N, FIORELLO M L, BAILEY D M. 13 reasons why the brain is susceptible to oxidative stress[J]. Redox Biol, 2018, 15: 490-503. |
8 | SHEN Y H, WU Q, SHI J S, et al. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease[J]. Biomed Pharmacother, 2020, 132: 110928. |
9 | ALTESHA M A, NI T, KHAN A, et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234(5): 5588-5600. |
10 | KAMADA Y, ITO S, KAMEKAWA D, et al. Increased physical activity prevents the progress of arteriosclerosis by reducing advanced glycation end products and oxidative stress in patients with diabetes mellitus, hypertension, and/or dyslipid[J]. Eur Heart J, 2013, 34(suppl 1): P3395. |
11 | SHARMA P, FENTON A, DIAS I H K, et al. Oxidative stress links periodontal inflammation and renal function[J]. J Clin Periodontol, 2021, 48(3): 357-367. |
12 | XUE M, PENG N N, ZHU X E, et al. Hsa_circ_0006872 promotes cigarette smoke-induced apoptosis, inflammation and oxidative stress in HPMECs and BEAS-2B cells through the miR-145-5p/NF-κB axis[J]. Biochem Biophys Res Commun, 2021, 534: 553-560. |
13 | DEMIRCI-ÇEKIÇ S, ÖZKAN G, AVAN A N, et al. Biomarkers of oxidative stress and antioxidant defense[J]. J Pharm Biomed Anal, 2022, 209: 114477. |
14 | OSAWA T. Development and application of oxidative stress biomarkers[J]. Biosci Biotechnol Biochem, 2018, 82(4): 564-572. |
15 | AL-SALEH I, AL-SEDAIRI A A, ELKHATIB R. Effect of mercury (Hg) dental amalgam fillings on renal and oxidative stress biomarkers in children[J]. Sci Total Environ, 2012, 431: 188-196. |
16 | CARDENAS J, BALAJI U, GU J H. Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions[J]. Sci Rep, 2020, 10(1): 22165. |
17 | ENGEDAL N, ŽEROVNIK E, RUDOV A, et al. From oxidative stress damage to pathways, networks, and autophagy via microRNAs[J]. Oxidative Med Cell Longev, 2018, 2018: 4968321. |
18 | YAN J Y, YANG Y L, FAN X H, et al. Sp1-mediated circRNA circHipk2 regulates myogenesis by targeting ribosomal protein Rpl7[J]. Genes, 2021, 12(5): 696. |
19 | LI M Y, DING W, TARIQ M A, et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p[J]. Theranostics, 2018, 8(21): 5855-5869. |
20 | ZHOU J L, LI L W, HU H, et al. Circ-HIPK2 accelerates cell apoptosis and autophagy in myocardial oxidative injury by sponging miR-485-5p and targeting ATG101[J]. J Cardiovasc Pharmacol, 2020, 76(4): 427-436. |
21 | WANG X J, BAI M. CircTM7SF3 contributes to oxidized low-density lipoprotein-induced apoptosis, inflammation and oxidative stress through targeting miR-206/ASPH axis in atherosclerosis cell model in vitro[J]. BMC Cardiovasc Disord, 2021, 21(1): 51. |
22 | ZHANG W, SUI Y. CircBPTF knockdown ameliorates high glucose-induced inflammatory injuries and oxidative stress by targeting the miR-384/LIN28B axis in human umbilical vein endothelial cells[J]. Mol Cell Biochem, 2020, 471(1/2): 101-111. |
23 | FAN S Y, HU K L, ZHANG D Y, et al. Interference of circRNA HIPK3 alleviates cardiac dysfunction in lipopolysaccharide-induced mice models and apoptosis in H9C2 cardiomyocytes[J]. Ann Transl Med, 2020, 8(18): 1147. |
24 | JIN P, LI L H, SHI Y, et al. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury[J]. Gene, 2021, 767: 145075. |
25 | CAI Y L, XU L, XU C X, et al. Hsa_circ_0001445 inhibits ox-LDL-induced HUVECs inflammation, oxidative stress and apoptosis by regulating miRNA-640[J]. Perfusion, 2022, 37(1): 86-94. |
26 | LIU H F, MA X W, WANG X, et al. Hsa_circ_0000345 regulates the cellular development of ASMCs in response to oxygenized low-density lipoprotein[J]. J Cell Mol Med, 2020, 24(20): 11849-11857. |
27 | WEI Z H, RAN H Z, YANG C H. CircRSF1 contributes to endothelial cell growth, migration and tube formation under ox-LDL stress through regulating miR-758/CCND2 axis[J]. Life Sci, 2020, 259: 118241. |
28 | YU H, ZHAO L S, ZHAO Y, et al. Circular RNA circ_0029589 regulates proliferation, migration, invasion, and apoptosis in ox-LDL-stimulated VSMCs by regulating miR-424-5p/IGF2 axis[J]. Vascul Pharmacol, 2020, 135: 106782. |
29 | COLLABORATORS GBD2CRD. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990‒2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet Respir Med, 2017, 5(9): 691-706. |
30 | MEHTA S L, DEMPSEY R J, VEMUGANTI R. Role of circular RNAs in brain development and CNS diseases[J]. Prog Neurobiol, 2020, 186: 101746. |
31 | LU G P, ZHANG J J, LIU X Y, et al. Regulatory network of two circRNAs and an miRNA with their targeted genes under astilbin treatment in pulmonary fibrosis[J]. J Cell Mol Med, 2019, 23(10): 6720-6729. |
32 | HANAN M, SIMCHOVITZ A, YAYON N, et al. A Parkinson's disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress[J]. EMBO Mol Med, 2020, 12(9): e11942. |
33 | LIN S P, HU J S, WEI J X, et al. Silencing of circFoxO3 protects HT22 cells from glutamate-induced oxidative injury via regulating the mitochondrial apoptosis pathway[J]. Cell Mol Neurobiol, 2020, 40(7): 1231-1242. |
34 | WANG Z, ZUO Y Q, GAO Z H. CircANKRD11 knockdown protects HPMECs from cigarette smoke extract-induced injury by regulating miR-145-5p/BRD4 axis[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 887-899. |
35 | QIAO D, HU C, LI Q Y, et al. Circ-RBMS1 knockdown alleviates CSE-induced apoptosis, inflammation and oxidative stress via up-regulating FBXO11 through miR-197-3p in 16HBE cells[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 2105-2118. |
36 | CHENG Q T, CAO X Y, XUE L J, et al. CircPRKCI-miR-545/589-E2F7 axis dysregulation mediates hydrogen peroxide-induced neuronal cell injury[J]. Biochem Biophys Res Commun, 2019, 514(2): 428-435. |
37 | XU H P, MA X Y, YANG C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis[J]. Front Mol Biosci, 2021, 8: 660269. |
38 | XU Y, JIANG W, ZHONG L, et al. Circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p/Wnt/β-catenin pathway and oxidative stress[J]. J Cell Mol Med, 2020: 2020Nov16. |
39 | CHEN B, LI Y H, LIU Y, et al. circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells[J]. J Cell Physiol, 2019, 234(11): 21249-21259. |
40 | SHI Y, SUN C F, GE W H, et al. Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress[J]. J Cell Mol Med, 2020, 24(19): 11397-11408. |
41 | LI Y, CHENG T, WAN C L, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J]. Gene, 2020, 747: 144653. |
42 | YANG Y T, SHEN P Y, YAO T, et al. Novel role of circRSU1 in the progression of osteoarthritis by adjusting oxidative stress[J]. Theranostics, 2021, 11(4): 1877-1900. |
43 | SONG I S, TATEBE S, DAI W P, et al. Delayed mechanism for induction of gamma-glutamylcysteine synthetase heavy subunit mRNA stability by oxidative stress involving p38 mitogen-activated protein kinase signaling[J]. J Biol Chem, 2005, 280(31): 28230-28240. |
44 | BARCHOWSKY A, DUDEK E J, TREADWELL M D, et al. Arsenic induces oxidant stress and NF-KB activation in cultured aortic endothelial cells[J]. Free Radic Biol Med, 1996, 21(6): 783-790. |
45 | RADULOVIC M, BAQADER N O, STOEBER K, et al. Spatial cross-talk between oxidative stress and DNA replication in human fibroblasts[J]. J Proteome Res, 2016, 15(6): 1907-1938. |
46 | WANG Y B, REN F H, SUN D W, et al. CircKEAP1 suppresses the progression of lung adenocarcinoma via the miR-141-3p/KEAP1/NRF2 axis[J]. Front Oncol, 2021, 11: 672586. |
47 | LIU Z Q, HE Q M, LIU Y, et al. Hsa_circ_0005915 promotes N, N-dimethylformamide-induced oxidative stress in HL-7702 cells through NRF2/ARE axis[J]. Toxicology, 2021, 458: 152838. |
[1] | TEN Weijung, YUAN Ying, KE Bilian. Research progress of non-coding RNA in myopia [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(3): 369-374. |
[2] | Jiu-ang MAO, Zhen WENG, Xiao-yin NIU, Yang HE, Zhen-xin WANG. Role of Tmprss6 gene in radiation-induced intestinal injury of mice [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1175-1182. |
[3] | Li LIU, Zi-long GENG, Jia-huan CHEN, Sha-sha ZHANG, Bing ZHANG. Whole gene expression profile analysis of miRNAs in human umbilical vein endothelial cells regulated by vascular endothelial growth factor A [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(9): 1183-1189. |
[4] | Shu-jun WAN, Xiang KONG, Kun LÜ. Relationship between non-coding RNAs and vascular diseases of diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 665-670. |
[5] | Run-ze YANG, Wen-ning XU, Huo-liang ZHENG, Sheng-dan JIANG. Effects of exosomes derived from human umbilical vein endothelial cells on apoptosis of pre-chondrogenic cells stimulated by inflammatory factors [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 147-153. |
[6] | Zhong-mao FU, Zai LUO, Ze-yin RONG, Jian-ming ZHANG, Teng-fei LI, Zhi-long YU, Chen HUANG. Study on the function and prognosis of circular RNA in colorectal cancer tissues based on high-throughput sequencing [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(2): 187-195. |
[7] | Jing WU, Xue-yi LI, Jing-hong CHEN, Ze-jian WANG. Study on changes of hippocampal bile acid receptors in the depression mouse models [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(12): 1628-1634. |
[8] | Yu-huan WANG, Yi-cen DING, Yao-yu CAI, Ya-ni KANG. Study on differentially expressed microRNA as a biomarker of polycystic ovary syndrome [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(11): 1429-1435. |
[9] | HE Hai-ning, ZHANG Wei, YAN Feng, SHI Yan-chen, WANG Jing-hua, XIAO Shi-fu#, WANG Tao#. Bioinformatics analysis of miRNAs in mild cognitive impairment due to Alzheimer's disease [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(9): 1174-1183. |
[10] | CHEN Wei, HAN Zheng, ZOU Yan-li, HUANG Sha-sha, TIAN Xia. Expressions and effects of serum miR-23a-3p and miR-27a-3p in mice with ulcerative colitis [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(8): 1069-1074. |
[11] | QIAN Shi-xing, FANG Yuan#, SUN Lin, QIU Qi, LIN Zhi-guang, XIAO Shi-fu, LI Xia#. Effect of citalopram on miRNA-16/serotonin transporter pathway in peripheral blood of patients with depression [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(6): 814-819. |
[12] | LIN Li, LI Hai-bo, XIA Fan, ZHOU Ji-xue, GUO Xiao-kui, ZHANG Shu-lin. Evaluation of exosome-derived miRNA-323a-3p human plasma as a potential biomarker for tuberculosis [J]. , 2020, 40(2): 171-. |
[13] | LU Hai-yang, ZHAO Wei-li. Role of gastrointestinal microbiota in tumorigenesis [J]. , 2019, 39(9): 1083-. |
[14] | JIN Shu-xin1, 2, WU Ting3, CAI Fei-yang1, 2, LEI Yun-xuan1, 2, XI Ye-bin1, CHEN Guang-jie1. Effect of miR-322-5p on inhibiting Th17 differentiationtargeting Akt3 in experimental autoimmune encephalomyelitis interferedinterferon-β [J]. , 2019, 39(8): 834-. |
[15] | YANG Shuang-shuang1*, GAO Tian-xing2*, HE Xuan1, ZHANG Rui1, ZHANG Yong-fang1. Regulation on brain-derived neurotrophic factor and relevant mechanism of anemarrhena saponin in H2O2-induced SH-SY5Y cells [J]. , 2019, 39(6): 578-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||