JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE) ›› 2021, Vol. 41 ›› Issue (5): 665-670.doi: 10.3969/j.issn.1674-8115.2021.05.018
• Review • Previous Articles Next Articles
Shu-jun WAN(), Xiang KONG, Kun LÜ()
Online:
2021-05-28
Published:
2021-05-27
Contact:
Kun Lü
E-mail:wanwan901226@163.com;lvkun315@126.com
Supported by:
CLC Number:
Shu-jun WAN, Xiang KONG, Kun LÜ. Relationship between non-coding RNAs and vascular diseases of diabetes mellitus[J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2021, 41(5): 665-670.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.shsmu.edu.cn/EN/10.3969/j.issn.1674-8115.2021.05.018
1 | Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications[J]. J Mol Cell Cardiol, 2015, 89: 42-50. |
2 | Cefalu WT, Buse JB, Tuomilehto J, et al. Update and next steps for real-world translation of interventions for type 2 diabetes prevention: reflections from a diabetes care editors expert forum[J]. Diabetes Care, 2016, 39(7): 1186-1201. |
3 | Rübsam A, Parikh S, Fort P. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4): 942. |
4 | Tang J, Yao DY, Yan HY, et al. The role of MicroRNAs in the pathogenesis of diabetic nephropathy[J]. Int J Endocrinol, 2019, 2019: 8719060. |
5 | Ahmed F, Bakhashab S, Bastaman I, et al. Anti-angiogenic miR-222, miR-195, and miR-21a plasma levels in T1DM are improved by metformin therapy, thus elucidating its cardioprotective effect: the MERIT study[J]. Int J Mol Sci, 2018, 19(10): 3242. |
6 | DiStefano JK. Beyond the protein-coding sequence: noncoding RNAs in the pathogenesis of type 2 diabetes[J]. Rev Diabet Stud, 2015, 12(3/4): 260-276. |
7 | Howangyin KY, Silvestre JS. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction[J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1126-1135. |
8 | Feng J, Xing WL, Xie L. Regulatory roles of MicroRNAs in diabetes[J]. Int J Mol Sci, 2016, 17(10): 1729. |
9 | Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and human diseases[J]. J Cell Physiol, 2018, 233(3): 2007-2018. |
10 | Liu TT, Hao Q, Zhang Y, et al. Effects of microRNA-133b on retinal vascular endothelial cell proliferation and apoptosis through angiotensinogen-mediated angiotensin II- extracellular signal-regulated kinase 1/2 signalling pathway in rats with diabetic retinopathy[J]. Acta Ophthalmol, 2018, 96(5): e626-e635. |
11 | Li EH, Huang QZ, Li GC, et al. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene[J]. Biosci Rep, 2017, 37(2): BSR20160572. |
12 | Costantino S, Paneni F, Lüscher TF, et al. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart[J]. Eur Heart J, 2016, 37(6): 572-576. |
13 | Zhong X, Chung ACK, Chen HY, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J]. Diabetologia, 2013, 56(3): 663-674. |
14 | Chandy M, Ishida M, Shikatani EA, et al. C-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells[J]. PLoS One, 2018, 13(8): e0202778. |
15 | de Gonzalo-Calvo D, Cenarro A, Civeira F, et al. microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers[J]. Clínica E Investig En Arterioscler, 2016, 28(4): 167-177. |
16 | Long JY, Wang Y, Wang WJ, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy[J]. J Biol Chem, 2011, 286(13): 11837-11848. |
17 | Badal SS, Wang Y, Long JY, et al. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy[J]. Nat Commun, 2016, 7: 12076. |
18 | Florijn BW, JMGJ Duijs, Levels JHM, et al. Diabetic nephropathy alters the distribution of circulating angiogenic microRNAs among extracellular vesicles, HDL, and ago-2[J]. Diabetes, 2019, 68(12): 2287-2300. |
19 | Cheng HS, Sivachandran N, Lau A, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways[J]. EMBO Mol Med, 2013, 5(7): 1017-1034. |
20 | Liu XS, Fan BY, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J]. Diabetes, 2017, 66(12): 3111-3121. |
21 | Wang L, Chopp M, Lu XR, et al. miR-146a mediates thymosin β4 induced neurovascular remodeling of diabetic peripheral neuropathy in type-II diabetic mice[J]. Brain Res, 2019, 1707: 198-207. |
22 | de Gonzalo-Calvo D, Vilades D, Martinezcamblor P, et al. Circulating microRNAs in suspected stable coronary artery disease: a coronary computed tomography angiography study[J]. J Intern Med, 2019, 286(3): 341-355. |
23 | Barber JL, Zellars KN, Barringhaus KG, et al. The effects of regular exercise on circulating cardiovascular-related microRNAs[J]. Sci Rep, 2019, 9(1): 7527. |
24 | Al-Hayali MA, Sozer V, Durmus S, et al. Clinical value of circulating microribonucleic acids miR-1 and miR-21 in evaluating the diagnosis of acute heart failure in asymptomatic type 2 diabetic patients[J]. Biomolecules, 2019, 9(5): 193. |
25 | 王磊,王红娜, 祖晓麟. 血浆miR-126水平与冠状动脉慢血流现象的关系[J]. 中华医学杂志, 2019, 99(17): 1323-1327. |
26 | Rawal S, Munasinghe PE, Shindikar A, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy[J]. Cardiovasc Res, 2017, 113(1): 90-101. |
27 | Seleem M, Shabayek M, Ewida HA. MicroRNAs 342 and 450 together with NOX-4 activity and their association with coronary artery disease in diabetes[J]. Diabetes Metab Res Rev, 2019, 35(5): e3130. |
28 | Pernomian L, Moreira JD, Gomes MS. In the view of endothelial microparticles: novel perspectives for diagnostic and pharmacological management of cardiovascular risk during diabetes distress[J]. Exp Diabetes Res, 2018, 2018: 9685205. |
29 | Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2[J]. RNA, 2015, 21(12): 2007-2022. |
30 | He XY, Ou CL, Xiao YH, et al. LncRNAs: key players and novel insights into diabetes mellitus[J]. Oncotarget, 2017, 8(41): 71325-71341. |
31 | Salviano-Silva A, Lobo-Alves SC, de Almeida RC, et al. Besides pathology: long non-coding RNA in cell and tissue homeostasis[J]. Non-Coding RNA, 2018, 4(1): 3. |
32 | Zhu AD, Sun YY, Ma QJ, et al. lncRNA-ATB promotes viability, migration, and angiogenesis in human microvascular endothelial cells by sponging microRNA-195[J]. J Cell Biochem, 2019, 120(9): 14360-14371. |
33 | Feng YM, Chen S, Xu JR, et al. Dysregulation of lncRNAs GM5524 and GM15645 involved in high glucose induced podocyte apoptosis and autophagy in diabetic nephropathy[J]. Mol Med Rep, 2018, 18(4): 3657-3664. |
34 | Abdulle LE, Hao JL, Pant OP, et al. MALAT1 as a diagnostic and therapeutic target in diabetes-related complications: a promising long-noncoding RNA[J]. Int J Med Sci, 2019, 16(4): 548-555. |
35 | Zhang JY, Chen MC, Chen JW, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis[J]. Biosci Rep, 2017, 37(2): BSR20170036. |
36 | Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 470. |
37 | Wang M, Wang SY, Yao D, et al. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy[J]. Mol Cell Endocrinol, 2016, 426: 136-145. |
38 | Yang Y, Lv X, Fan QL, et al. Analysis of circulating lncRNA expression profiles in patients with diabetes mellitus and diabetic nephropathy: differential expression profile of circulating lncRNA[J]. Clin Nephrol, 2019, 92(1): 25-35. |
39 | Li X, Zeng L, Cao CW, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy[J]. Exp Cell Res, 2017, 350(2): 327-335. |
40 | Hu MS, Wang R, Li XB, et al. LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin[J]. J Cell Mol Med, 2017, 21(11): 2732-2747. |
41 | Yu W, Zhao GQ, Cao RJ, et al. LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes[J]. Behav Neurol, 2017, 2017: 2941297. |
42 | Fachrul M, Utomo DH, Parikesit AA. lncRNA-based study of epigenetic regulations in diabetic peripheral neuropathy[J]. Silico Pharmacol, 2018, 6(1): 1-5. |
43 | Pant T, Dhanasekaran A, Fang J, et al. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy[J]. BMC Cardiovasc Disord, 2018, 18(1): 1-10. |
44 | Wu G, Cai J, Han Y, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis and atherosclerosis by enhancing p53 activity[J]. Circulation, 2014, 130(17): 1452-1465. |
45 | Reddy MA, Chen Z, Park JT, et al. Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA[J]. Diabetes, 2014, 63(12): 4249-4261. |
46 | Das S, Senapati P, Chen Z, et al. Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells[J]. Nat Commun, 2017, 8(1): 1467. |
47 | Zhang B, Wang D, Ji TF, et al. Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model[J]. Oncotarget, 2017, 8(10): 17347-17359. |
48 | Zaiou M. CircRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications[J]. Cells, 2020, 9(3): 659. |
49 | Yan QJ, He XY, Kuang GY, et al. CircRNA cPWWP2A: an emerging player in diabetes mellitus[J]. J Cell Commun Signal, 2020, 14(3): 351-353. |
50 | Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J]. Investig Ophthalmol Vis Sci, 2017, 58(14): 6500-6509. |
51 | Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J]. Theranostics, 2017, 7(11): 2863-2877. |
52 | Hu W, Han Q, Zhao L, et al. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1[J]. J Cell Physiol, 2019, 234(2): 1469-1476. |
53 | Liu HF, Wang X, Wang ZY, et al. Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11[J]. J Cell Physiol, 2020, 235(5): 4520-4529. |
54 | Wang L, Luo TY, Bao ZH, et al. Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats[J]. Biochem Biophys Res Commun, 2018, 505(3): 644-650. |
55 | Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts[J]. Sci Rep, 2017, 7: 40342. |
56 | Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1[J]. Biochem Biophys Res Commun, 2017, 487(4): 769-775. |
57 | Yang F, Li A, Qin Y, et al. A novel circular RNA mediates pyroptosis of diabetic cardiomyopathy by functioning as a competing endogenous RNA[J]. Mol Ther Nucleic Acids, 2019, 17: 636-643. |
58 | Xu HY, Guo S, Li W, et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Sci Rep, 2015, 5: 12453. |
59 | Li CY, Zhao L, Jiang W, et al. Correct microarray analysis approaches in 'Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus'[J]. Diabetes Vasc Dis Res, 2018, 15(1): 92-93. |
[1] | YU Meng-na1, YANG Biao2, YANG Li-zhen1. Prediction and bioinformatics analysis of hsa-miR-223-3p target genes related to diabetes mellitus [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(11): 1477-1484. |
[2] | HE Hai-ning, ZHANG Wei, YAN Feng, SHI Yan-chen, WANG Jing-hua, XIAO Shi-fu#, WANG Tao#. Bioinformatics analysis of miRNAs in mild cognitive impairment due to Alzheimer's disease [J]. JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY (MEDICAL SCIENCE), 2020, 40(09): 1174-1183. |
[3] | ZHANG Peng1, CHANG Zheng-yan2, YANG Lei1, XUE Song1, LIAN Feng1. Bioinformatics analysis of differentially expressed genes in ischemic cardiomyopathy [J]. , 2019, 39(7): 698-. |
[4] | FANG Yu, WANG Wei-di, CHENG Ying, CUI Dong-hong. Research progress on the role of long non-coding RNAs in central nervous system and schizophrenia [J]. , 2019, 39(2): 198-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||