1 |
Santos AJM, Lo YH, Mah AT, et al. The intestinal stem cell niche: homeostasis and adaptations[J]. Trends Cell Biol, 2018, 28(12): 1062-1078.
|
2 |
Kumagai T, Rahman F, Smith AM. The microbiome and radiation induced-bowel injury: evidence for potential mechanistic role in disease pathogenesis[J]. Nutrients, 2018, 10(10): 1045-1060.
|
3 |
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, et al. Targets for protection and mitigation of radiation injury[J]. Cell Mol Life Sci, 2020, 77(16): 3129-3159.
|
4 |
Theriot CA, Westby CM, Morgan JLL, et al. High dietary iron increases oxidative stress and radiosensitivity in the rat retina and vasculature after exposure to fractionated γ radiation[J]. NPJ Microgravity, 2016, 2: 16014.
|
5 |
Reelfs O, Abbate V, Hider RC, et al. A powerful mitochondria-targeted iron chelator affords high photoprotection against solar ultraviolet a radiation [J]. J Invest Dermatol, 2016, 136(8): 1692-1700.
|
6 |
Enns CA, Jue S, Zhang AS. The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice[J]. Blood, 2020, 136(8): 989-1001.
|
7 |
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica, 2020, 105(2): 260-272.
|
8 |
Yap ML, Zubizarreta E, Bray F, et al. Global access to radiotherapy services: have we made progress during the past decade?[J]. J Glob Oncol, 2016, 2(4): 207-215.
|
9 |
Nicholas S, Chen L, Choflet A, et al. Pelvic radiation and normal tissue toxicity [J]. Semin Radiat Oncol, 2017, 27(4): 358-369.
|
10 |
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis[J]. Antioxid Redox Signal, 2018, 29(15): 1447-1487.
|
11 |
Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders[J]. Blood, 2016, 127(23): 2809-2813.
|
12 |
Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(12): 118535.
|
13 |
Qi X, Zhang YX, Guo H, et al. Mechanism and intervention measures of iron side effects on the intestine[J]. Crit Rev Food Sci Nutr, 2020, 60(12): 2113-2125.
|
14 |
Wei J, Wang B, Wang H, et al. Radiation-induced normal tissue damage: oxidative stress and epigenetic mechanisms[J]. Oxid Med Cell Longev, 2019, 2019: 3010342.
|
15 |
Sebastià N, Olivares-González L, Montoro A, et al. Redox status, dose and antioxidant intake in healthcare workers occupationally exposed to ionizing radiation [J]. Antioxidants (Basel), 2020, 9(9): 778-793.
|
16 |
Ahmad IM, Temme JB, Abdalla MY, et al. Redox status in workers occupationally exposed to long-term low levels of ionizing radiation: a pilot study[J]. Redox Rep, 2016, 21(3): 139-145.
|
17 |
Bessman NJ, Mathieu JRR, Renassia C, et al. Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing[J]. Science, 2020, 368(6487): 186-189.
|