上海交通大学学报(医学版), 2023, 43(1): 108-113 doi: 10.3969/j.issn.1674-8115.2023.01.014

综述

老年患者全身麻醉术后肌松残余的研究进展

刘秋利,, 江来, 翁晓建,

上海交通大学医学院附属新华医院麻醉与重症医学科,上海 200092

Progress of residual neuromuscular blockade after general anesthesia in elderly patients

LIU Qiuli,, JIANG Lai, WENG Xiaojian,

Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China

通讯作者: 翁晓建,电子信箱:jxw1860@163.com

编委: 瞿麟平

收稿日期: 2022-05-14   接受日期: 2022-11-03   网络出版日期: 2023-01-16

基金资助: 国家自然科学基金.  82172159
上海交通大学医工交叉研究基金.  YG2021QN56

Corresponding authors: WENG Xiaojian, E-mail:jxw1860@163.com.

Received: 2022-05-14   Accepted: 2022-11-03   Online: 2023-01-16

作者简介 About authors

刘秋利(1997—),女,硕士生;电子信箱:liuqiuly@sjtu.edu.cn。 E-mail:liuqiuly@sjtu.edu.cn

摘要

肌肉松弛(肌松)药诱导的肌肉松弛是手术中气管插管和固定的重要条件之一,术后未完全逆转肌松药效应称为术后肌松残余(postoperative residual neuromuscular block,PRNB)。PRNB可引发患者一系列严重的术后并发症甚至死亡,因此在麻醉实施过程中对其进行早期预防及积极治疗必不可少。随着外科技术飞速发展及人口平均寿命逐渐延长,老年患者的手术需求逐渐增多。与此同时,由于老年患者机体的生理病理变化及合并的基础疾病,其更易发生不同程度的PRNB,可严重损害患者的预后以及增加医疗资源的损耗。近年来,各类短效肌松药和新型拮抗剂(如舒更葡糖钠)等的问世,以及术中肌松监测的临床应用,已经明显降低了年龄相关PRNB所致不良事件的发生率,彻底改变了麻醉实践。同时,以神经肌肉接头结构为主导的基础研究,以及针对老年患者的药代动力学和药效动力学研究,也为降低PRNB对老年患者的危害提供了新的理论依据。该文对临床上老年患者全身麻醉手术后发生PRNB的原因机制、引发的不良事件及临床干预措施的研究进展作一综述,以期为老年患者全身麻醉的肌松管理及术后拮抗提供参考。

关键词: 老年人 ; 术后肌松残余 ; 肌肉松弛药 ; 肌肉松弛拮抗

Abstract

Muscle relaxation induced by muscle relaxants is one of the important conditions for endotracheal intubation and fixation, but sometimes muscle functions recover incompletely after operations, which is called postoperative residual neuromuscular block (PRNB). It can cause a series of serious postoperative complications and even death. Hence, it is essential to prevent and treat PRNB in the early stage during anesthesia implementation. With the rapid development of surgical technology and the gradual extension of the life span of the population, the number of operations for elderly patients is gradually increasing. Meanwhile, due to the physiological and pathological changes of the elderly and the combined underlying diseases, the elderly are more likely to suffer from PRNB in different degrees after surgery, which seriously damages the prognosis of elderly patients and increases the loss of medical resources. In these years, the successful application of short-acting muscle relaxants, new antagonists (such as sugammadex), and multi-mode neuromuscular monitoring devices in clinical practice have greatly reduced the incidence of PRNB in elderly patients. Furthermore, the basic researches which mainly based on the neuromuscular junction structure and the pharmacokinetic and pharmacodynamic studies of the elderly provide a new theoretical basis for reducing the harm of PRNB to elderly patients. This paper reviews the research progress of the mechanism, adverse events and clinical interventions of PRNB in elderly patients after general anesthesia surgeries to provide reference for muscle relaxation management and postoperative antagonism in these people.

Keywords: the elderly ; postoperative residual neuromuscular block (PRNB) ; neuromuscular blocking agent ; muscle relaxant antagonism

PDF (1280KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘秋利, 江来, 翁晓建. 老年患者全身麻醉术后肌松残余的研究进展. 上海交通大学学报(医学版)[J], 2023, 43(1): 108-113 doi:10.3969/j.issn.1674-8115.2023.01.014

LIU Qiuli, JIANG Lai, WENG Xiaojian. Progress of residual neuromuscular blockade after general anesthesia in elderly patients. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(1): 108-113 doi:10.3969/j.issn.1674-8115.2023.01.014

研究1表明,全球老龄化人口比例预计在2055年上升至总人口的22%;这一群体数量的上升将对未来几十年的麻醉实践产生重大影响。随着达芬奇机器人辅助手术等新型微创外科技术的进步,临床上进行外科手术治疗的老年患者数量不断增加,其中约50%的老年患者需要全身麻醉(全麻)进行手术干预2。肌肉松弛(肌松)药是全麻三大重要药物(镇静药、镇痛药、肌松药)之一3,能够满足麻醉诱导气管插管和外科手术所需要的肌松条件,而老年人群对肌松药物的代谢有其特殊性4。各个脏器功能的退化、神经肌肉接头(neuromuscular junction,NMJ)的退行性变以及基础疾病5,使得老年患者更易发生术后肌松残余(postoperative residual neuromuscular block,PRNB)的情况。

PRNB是指全麻术毕肌松药作用尚存、未充分代谢完毕,患者临床上表现为吞咽无力、呼吸肌功能下降、握持不能等,严重者可出现反流性误吸、低氧血症,甚至有死亡的风险6。近年来,普遍认为判断PRNB的金标准是指4个成串刺激比值(train of four stimulation ratio,TOFr)<0.97。在一项前瞻性队列研究8中发现,PRNB不良事件的发生率在实施全麻的老年患者中达57.7%,而在全麻的年轻患者中为30.0%。老年患者因PRNB引发的各类并发症发生率增加、不良事件死亡率逐年上升,同时PRNB也造成了医疗资源的大量浪费8-9。但研究10-11表明,19.3%的欧洲麻醉医师和9.4%的美国麻醉医师从不执行术中肌松监测。

鉴于PRNB所致的不良后果,降低PRNB发生率成为麻醉领域的研究焦点,尤其是针对老年患者这一特殊群体。在未来麻醉实践中,对于实施全麻的老年患者普及术中的肌松监测12、合理应用新型中短效肌松药物和新型肌松药拮抗剂等干预手段,将有效缓解老年患者PRNB的发生情况,术后呼吸道不良事件等也会相应减少13。避免老年患者发生PRNB,实现快通道的精细麻醉,在未来麻醉管理和应用中具有重大意义。本文归纳总结近年来老年患者PRNB的研究,探索其发生的可能机制及临床防治措施,以期为临床麻醉实践提供新思路。

1 老年患者易发生PRNB的原因

1.1 肌松药靶器官生理病理变化

肌肉组织是肌松药作用的靶器官。老年患者骨骼肌萎缩,肌肉组织质量减少,肌肉间脂肪浸润增加,含水比例下降,药物的分布容积变低14;按患者实际体质量计算出的肌松药应用剂量会相对偏多,因此术前经静脉注射同等剂量的肌松药后,老年患者较年轻患者体内的血浆药物浓度更高,肌松作用更持久13

1.2 药代动力学变化

据一项针对中国城市心力衰竭患病率的研究15表明,65岁以上的老年人中存在心力衰竭的患者超过10%,且心力衰竭发病率随着年龄的增长而上升,表现为心脏射血功能下降、心输出量降低,可导致肾脏、肝脏等多个器官灌注量减少。

由于老年患者可能存在的肾脏血流量减少16、肾脏萎缩、肾功能下降17,肌松药物经肾脏的排泄量降低,药物消除半衰期(t1/2β)延长,药物残余作用时间也相应延长。例如,主要经肾脏代谢的肌松药泮库溴铵,在30~57岁患者的t1/2β为130 min,而在70~84岁患者的t1/2β则为151 min5

老年患者的肝脏灌注量减少、肝细胞数量减少、肝功能下降,因此药物经肝脏代谢的清除速度显著减慢16。研究18-19表明,轻度肝功能不全受试者的血浆药物浓度为健康人的3倍。依赖肝脏清除的肌松药在老年患者体内的清除率下降,导致血浆药物浓度下降缓慢,因而造成肌松作用时间延长。

1.3 药效动力学变化

研究表明,在正常成年哺乳动物骨骼肌NMJ处通常以成人型乙酰胆碱受体(ε-nicotinic acetylcholine receptor,ε-nAChR)表达为主;老年患者的骨骼肌NMJ发生退化,肌松药作用的突触后膜ε-nAChR表达降低,衰老及病理状态下检测到胚胎型乙酰胆碱受体(γ-nicotinic acetylcholine receptor,γ-nAChR)重新表达并广泛分布于骨骼肌细胞膜上,表现为对去极化肌松药的敏感性增强20,因此在衰老机体中肌松药物的阻滞作用时间延长。

骨骼肌NMJ处的乙酰胆碱酯酶活性与肌松药的代谢、肌松拮抗药的作用也息息相关。近来研究20-21表明,在衰老机体内通过抑制磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)信号通路能够导致膈肌氧化应激增强,进而促使乙酰胆碱酯酶的活性下降,肌松药作用时间延长。

1.4 其他因素

研究22表明,老年人体温调节中枢敏感性降低,机体肌肉组织含量减少,术中更易发生低体温,从而可能引起血管收缩,影响脏器对肌松药的代谢,引发PRNB。除此之外,末次肌松药给药时间较晚23、术中输液量过多24、使用抗生素25、肥胖等原因,也易导致全麻术后老年患者发生PRNB。了解这些年龄相关因素,有助于麻醉医师在保证麻醉安全性的同时,提高围手术期麻醉的效果。

2 PRNB所致临床不良事件

2.1 呼吸道并发症

临床研究26表明,肌松作用的不完全恢复与肺部并发症等术后不良事件的发生密切相关,包括苏醒延迟、低氧血症、肺不张、肺炎和呼吸衰竭等。大多数老年患者随年龄增长呼吸系统功能下降,与年轻人相比,老年人PRNB及相关不良后果的风险增加8。在一项针对599例全麻中使用肌松药的成年患者进行的前瞻性队列研究22发现,PRNB患者在麻醉恢复室(postanesthesia care unit,PACU)中发生呼吸不良事件的频率更高,并与年龄显著相关。

老年人群中多数存在某些基础疾病以及年龄相关的肌肉萎缩,低氧血症和高碳酸血症等不良事件发生的频率更高26。研究27表明,由于65岁以上的老年患者的生理储备有限,特别是咽部功能和肌力受损,PRNB可加重上呼吸道梗阻和吞咽无力,使得反流性误吸的发生率大大升高;此外,老年患者呼吸中枢敏感性下降,咳嗽反射减弱,气道分泌物无法通过咳嗽有效排出,增加了肺不张和肺炎的风险26

尽管术后老年患者使用氧疗的比例更高,但是在转运过程以及PACU中发生中度缺氧的老年患者占比却更高2028。这可能是由于老年患者PRNB所致呼吸肌无力引起肺通气不足29,造成机体低氧血症及高碳酸血症。因此,在临床中应根据患者年龄,为老年患者提供更精细的麻醉和护理,避免围术期呼吸道不良事件的发生,危害老年患者预后。

2.2 医疗资源浪费

GRABITZ等9研究表明,相较于青年人群,老年人群发生术后残留神经肌肉阻滞与重症监护病房(intensive care unit,ICU)入住率增高、PACU停留时间增加及住院时间延长显著相关,甚至术后患者死亡风险也会升高,这些对医疗资源的利用和周转造成了一定影响。

2.3 患者主观不适

在临床上,由于轻度PRNB难以被察觉,但发生后易引起患者一系列的主观不适,如胸闷、视力模糊、吞咽无力等,尤其是对于老年群体,大大增加了其术后痛苦。即便是术后自主呼吸已恢复、意识清醒、生命体征正常,患者仍会产生主观不适。因此在麻醉结束唤醒患者之前,应仔细监测老年患者的神经肌肉阻滞状况,并将其完全逆转,以减轻患者围术期不适。

3 老年患者PRNB的临床预防及治疗

PRNB在老年患者中更常见,因此对老年人群施行全麻时的术中肌松管理、肌松药物及肌松拮抗药物合理选择及应用尤为重要。

3.1 优化术中肌松管理

3.1.1 常规使用肌松监测

理论上对于全麻使用肌松药的患者都应常规行神经肌肉功能的监测;可靠的肌力监测可以指导术中的肌松深度,以及对TOFr进行定量6。近年来,认为拔管时TOFr>0.9表明肌松作用已完全消退6。但最近欧洲一项针对22 803例全麻成年患者的前瞻性多中心队列研究30表明,根据多变量Logistic回归结果,以TOFr>0.95为标准相较于TOFr>0.9更佳;按TOFr>0.95的标准拔管,患者术后肺部并发症的风险降低了4.9%;因此该研究推荐TOFr标准从0.9升至0.95,以使患者术后呼吸与咳嗽功能恢复更良好。这一标准在临床麻醉中对逆转PRNB效果更佳,对于老年患者全麻的指导作用意义重大。

3.1.2 控制肌松药给药方式及术中补液

由于持续输注肌松药可能导致肌松效应积累,临床上一般采用间断给予肌松药26。研究31-32表明,术中补液过多会导致罗库溴铵、阿曲库铵的敏感性增高,肌松作用时间延长。如果手术时间在0.5~1 h范围内,通常不给予额外的肌松药物,以避免肌松恢复时间不够,难以在麻醉结束时达到TOFr≥0.9,从而产生PRNB33

3.1.3 避免术中低体温

术中低体温会减缓肌松药的代谢,造成药物蓄积,苏醒时间延迟34。对实施全麻的老年患者采取术中体温监测,并使用加温输液装备、加温毯等,能有效减少老年患者PRNB的发生22

3.2 肌松药物的选择

针对老年患者全麻手术虽无特定的肌松药物,但一般来说适合老年患者全麻的理想肌松药物应具有药物半衰期较短、代谢对肝肾依赖性低、不良反应小、恢复快以及容易被肌松拮抗剂特异性拮抗等特点35。临床上,起效快的主要有琥珀胆碱、罗库溴铵等中短效肌松药,以及新型短效的非去极化神经肌肉阻滞剂(non-depolarizing neuromuscular blocking agents,NMBA),如gantacurium和CW00236。尽管琥珀胆碱是超短时效的肌松药物,但引起不良反应较多,如心律失常、电解质紊乱及颅内压增高、肌肉酸痛等37,且老年患者NMJ的乙酰胆碱酯酶水平较低,对肌松药的降解能力较弱38,因此不宜用于临床高龄患者的全麻。罗库溴铵属于氨基甾体类肌松药物,代谢主要依赖肝脏,老年人的肝功能下降及灌注减少使其在体内作用时间延长,但可用新斯的明或舒更葡糖钠特异性拮抗36;另有研究539表明,罗库溴铵不会引起老年患者组胺分泌增加,且具有持续时间短、恢复快、不良反应小的优势。另外,顺式阿曲库铵由于其代谢不依赖肝肾,且起效较快、安全性高,因此对老年患者较为适合;研究40显示,在老年患者中使用顺式阿曲库铵的起效时间及肌松作用时间相较于年轻患者无明显差异,因此顺式阿曲库铵的肌松作用不受年龄因素影响。

CW002作为一种仍处于临床试验阶段的超短效肌松药,化学结构与gantacurium类似,其优势为可被L-半胱氨酸特异性逆转,且无组胺释放、起效快,该特点使其能够较好用于老年患者的手术麻醉41

3.3 术后肌松拮抗药的选择

3.3.1 新斯的明

新斯的明是临床上最常见胆碱酯酶抑制剂,为水溶性。由于老年患者体内药物分布浓度的变化24,肌松恢复时间相对于年轻患者会相应延长。新斯的明可拮抗非去极化肌松药物,如常用的顺式阿曲库铵、罗库溴铵等42,其可通过抑制乙酰胆碱酯酶活性,增加乙酰胆碱的浓度。CHOI等43研究表明,新斯的明逆转顺式阿曲库铵肌松作用的时间比罗库溴铵更长,且在老年患者体内更为明显,这可能是因为老年患者体内肌松药的血药浓度下降较慢所致。临床上,常将新斯的明与阿托品(毒蕈碱型AChR拮抗剂)联合使用,主要是为了防止毒蕈碱型AChR产生的不良反应;高逆转剂量的新斯的明会引起术后呼吸系统并发症发生率增加,常见的有肺不张、肺部感染、支气管痉挛等44,以及由于封顶效应导致AChR脱敏而造成的肌肉松弛。

3.3.2 舒更葡糖钠

舒更葡糖钠是苏格兰纽豪斯药物研发中心开发的创新拮抗剂,是一种对罗库溴铵具有高度亲和力的修饰后的γ-环糊精36。它对任何深度的神经肌肉阻滞都能够有效逆转,且不良反应(例如心血管效应和呼吸系统并发症)较少,可降低老年患者PRNB的发生率45。研究46表明,使用舒更葡糖钠拮抗肌松的患者在PACU住院时间明显较使用新斯的明的患者短,这有利于患者恢复以及提升医疗资源的利用率。一项临床研究47发现,腹腔镜胃切除术后使用不同肌松拮抗药物,导致胸腔积液的发生率也不同,使用舒更葡糖钠和新斯的明拮抗的患者胸腔积液发生率分别为18%和23.4%,而肺部并发症的发生率差异无统计学意义48,因此推测在腹腔镜术后使用舒更葡糖钠拮抗肌松的预后可能更佳。

但舒更葡糖钠的缺点之一是偶尔会诱发过敏反应49,且对苄异喹啉类肌松药(如顺式阿曲库铵)无拮抗作用。研究50显示,舒更葡糖钠诱导的过敏反应发生率约为1/5 000,在仅评估过敏反应的发生率时,新斯的明可能比舒更葡糖钠更安全。但目前由于舒更葡糖钠价格较贵,因此在我国普及使用仍需时间。

3.3.3 L-半胱氨酸和Calabadion 1、Calabadion 2

L-半胱氨酸可以与CW002的双键加合导致其水解,能够使机体组胺释放减少,快速逆转CW002引起的神经肌肉阻滞,且产生的不良反应较小,对平均动脉压和心率仅产生轻度改变51。Calabadion 1能与罗库溴铵形成复合物,不产生心血管效应52。Calabadion 2是一种与Calabadion 1相关的分子,其对罗库溴铵的亲和力约为舒更葡糖钠的90倍53。此外,Calabadion还可以与甾体类、苄异喹啉类肌松药形成复合物,作用在肌松药的季铵位点,阻止肌松药与nAChR结合,例如临床中常用的顺式阿曲库铵,其方式与舒更葡糖类似54。尽管顺式阿曲库铵在生理条件下会因霍夫曼消除反应自发降解,但Calabadion可以促进顺式阿曲库铵诱导的神经肌肉阻滞迅速且完全地逆转。综上所述,Calabadion作为针对甾类和卞异喹啉类肌松药的新型特效拮抗剂,目前仍处于临床试验阶段,如能投入临床使用将大大提高麻醉安全性51

4 结语

一直以来,老年患者的PRNB是临床麻醉关注的热点,其与患者全麻术后的预后密切相关。老年人由于衰老导致的生理病理变化和一系列基础疾病导致其体内的药物代谢发生改变,使药物作用时间延长。尽管目前新型肌松药物和肌松拮抗药及各类术中监测的普遍应用,但由于PRNB发生隐匿,临床上往往容易被麻醉医师忽略。为了减少老年患者全麻PRNB对患者本人、家庭及社会的影响,麻醉医师应该加强对老年患者的术前评估、术中肌松监测以及肌松药和肌松拮抗药的合理使用,以避免各类不良事件的发生。未来新型肌松药及拮抗药物的应用、各类客观监测仪器的普及使用等,将使老年患者PRNB的发生率降低,改善患者预后,实现快通道精准麻醉。

作者贡献声明

刘秋利提出构思及负责论文初稿的撰写,翁晓建、江来参与了论文的审阅和修订。所有作者均阅读并同意了最终稿件的提交。

LIU Qiuli conceived the idea and drafted the original manuscript;WENG Xiaojian and JIANG Lai participated in the reviewing and editing. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

BLOOM D E, CHATTERJI S, KOWAL P, et al. Macroeconomic implications of population ageing and selected policy responses[J]. Lancet, 2015, 385(9968): 649-657.

[本文引用: 1]

CAO X Z, WHITE P F, MA H. Perioperative care of elderly surgical outpatients[J]. Drugs Aging, 2017, 34(9): 673-689.

[本文引用: 1]

吴新民. 麻醉过程中使用肌松药及其拮抗剂的必要性[J]. 临床药物治疗杂志, 2019, 17(6): 32-34, 80.

[本文引用: 1]

WU X M. The necessity for using muscle relaxants and their antagonists during anesthesia[J]. Clinical Medication Journal, 2019, 17(6): 32-34, 80.

[本文引用: 1]

CARRON M, BERTONCELLO F, IEPPARIELLO G. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives[J]. Clin Interv Aging, 2017, 13: 13-24.

[本文引用: 1]

COPE T M, HUNTER J M. Selecting neuromuscular-blocking drugs for elderly patients[J]. Drugs Aging, 2003, 20(2): 125-140.

[本文引用: 3]

WEIGEL W A, WILLIAMS B L, HANSON N A, et al. Quantitative neuromuscular monitoring in clinical practice: a professional practice change initiative[J]. Anesthesiology, 2022, 136(6): 901-915.

[本文引用: 3]

NAGUIB M, BRULL S J, KOPMAN A F, et al. Consensus statement on perioperative use of neuromuscular monitoring[J]. Anesth Analg, 2018, 127(1): 71-80.

[本文引用: 1]

MURPHY G S, SZOKOL J W, AVRAM M J, et al. Residual neuromuscular block in the elderly: incidence and clinical implications[J]. Anesthesiology, 2015, 123(6): 1322-1336.

[本文引用: 3]

GRABITZ S D, RAJARATNAM N, CHHAGANI K, et al. The effects of postoperative residual neuromuscular blockade on hospital costs and intensive care unit admission: a population-based cohort study[J]. Anesth Analg, 2019, 128(6): 1129-1136.

[本文引用: 2]

BASH L D, TURZHITSKY V, BLACK W, et al. Neuromuscular blockade and reversal agent practice variability in the US inpatient surgical settings[J]. Adv Ther, 2021, 38(9): 4736-4755.

[本文引用: 1]

THOMSEN J L D, MATHIESEN O, HÄGI-PEDERSEN D, et al. Improving neuromuscular monitoring and reducing residual neuromuscular blockade via e-learning: a multicentre interrupted time-series study (INVERT study)[J]. Acta Anaesthesiol Scand, 2022, 66(5): 580-588.

[本文引用: 1]

MURPHY G S, BRULL S J. Quantitative neuromuscular monitoring and postoperative outcomes: a narrative review[J]. Anesthesiology, 2022, 136(2): 345-361.

[本文引用: 1]

WEIGEL W A, THILEN S R. Neuromuscular blockade monitoring and reversal: a clinical and pharmacoeconomic update[J]. Adv Anesth, 2021, 39: 169-188.

[本文引用: 2]

KHAN M S, ROBERTS M S. Challenges and innovations of drug delivery in older age[J]. Adv Drug Deliv Rev, 2018, 135: 3-38.

[本文引用: 1]

WANG H, CHAI K, DU M H, et al. Prevalence and incidence of heart failure among urban patients in China: a national population-based analysis[J]. Circ Heart Fail, 2021, 14(10): e008406.

[本文引用: 1]

DI CESARE F, TENORI L, MEONI G, et al. Lipid and metabolite correlation networks specific to clinical and biochemical covariate show differences associated with sexual dimorphism in a cohort of nonagenarians[J]. GeroScience, 2022, 44(2): 1109-1128.

[本文引用: 2]

MINA D A, JOHANSEN K L, MCCULLOCH C E, et al. Muscle relaxant use among hemodialysis patients: prevalence, clinical indications, and adverse outcomes[J]. Am J Kidney Dis, 2019, 73(4): 525-532.

[本文引用: 1]

JOHARATNAM-HOGAN N, SHIU K K, KHAN K. Challenges in the treatment of gastric cancer in the older patient[J]. Cancer Treat Rev, 2020, 85: 101980.

[本文引用: 1]

SUN S J, SUN Y, CHEN R, et al. Diaphragm ultrasound to evaluate the antagonistic effect of sugammadex on rocuronium after liver surgery in patients with different liver Child-Pugh grades: study protocol for a prospective, double-blind, non-randomised controlled trial[J]. BMJ Open, 2022, 12(2): e052279.

[本文引用: 1]

LIU H, WENG X J, YAO J Y, et al. Neuregulin-1β protects the rat diaphragm during sepsis against oxidative stress and inflammation by activating the PI3K/Akt pathway[J]. Oxid Med Cell Longev, 2020, 2020: 1720961.

[本文引用: 3]

LIU H, WU J, YAO J Y, et al. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis[J]. Oxid Med Cell Longev, 2017, 2017: 9718615.

[本文引用: 1]

STEWART P A, LIANG S S, LI Q S, et al. The impact of residual neuromuscular blockade, oversedation, and hypothermia on adverse respiratory events in a postanesthetic care unit: a prospective study of prevalence, predictors, and outcomes[J]. Anesth Analg, 2016, 123(4): 859-868.

[本文引用: 3]

NATARAJAN S, GOVENDER K, SHOBO A, et al. Potential of brain mast cells for therapeutic application in the immune response to bacterial and viral infections[J]. Brain Res, 2021, 1767: 147524.

[本文引用: 1]

GUO J R, YUAN X H, ZHOU X F, et al. Pharmacokinetics and pharmacodynamics of cisatracurium in patients undergoing surgery with two hemodilution methods[J]. J Clin Anesth, 2017, 38: 75-80.

[本文引用: 2]

UEYAMA S, HAYAMA S, MIZUTANI M, et al. Periodic quadriplegia during the acute postoperative phase of cervical laminoplasty: a case report and literature review[J]. Acta Neurochir (Wien), 2022, 164(5): 1229-1232.

[本文引用: 1]

MEDINA M, TUFIK S, ANDERSEN M L. Sleep disturbances and residual neuromuscular blockade: future research possibilities[J]. Anaesthesia, 2020, 75(4): 552.

[本文引用: 4]

CEDBORG A I, SUNDMAN E, BODÉN K, et al. Pharyngeal function and breathing pattern during partial neuromuscular block in the elderly: effects on airway protection[J]. Anesthesiology, 2014, 120(2): 312-325.

[本文引用: 1]

ALENEZI F K, ALNABABTAH K, ALQAHTANI M M, et al. The association between residual neuromuscular blockade (RNMB) and critical respiratory events: a prospective cohort study[J]. Perioper Med (Lond), 2021, 10(1): 14.

[本文引用: 1]

KIRMEIER E, ERIKSSON L I, LEWALD H, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study[J]. Lancet Respir Med, 2019, 7(2): 129-140.

[本文引用: 1]

BLOBNER M, HUNTER J M, MEISTELMAN C, et al. Use of a train-of-four ratio of 0.95 versus 0.9 for tracheal extubation: an exploratory analysis of POPULAR data[J]. Br J Anaesth, 2020, 124(1): 63-72.

[本文引用: 1]

DAHABA A A, SULJEVIC I, OETTL K, et al. Influence of acute normovolemic hemodilution on the pharmacokinetics of cisatracurium besylate[J]. Minerva Anestesiol, 2013, 79(11): 1238-1247.

[本文引用: 1]

LI G, FREUNDLICH R E, GUPTA R K, et al. Postoperative pulmonary complications′ association with sugammadex versus neostigmine: a retrospective registry analysis[J]. Anesthesiology, 2021, 134(6): 862-873.

[本文引用: 1]

SUN Y, WU Z L, WANG Q, et al. Sugammadex, the guardian of deep muscle relaxation during conventional and robot-assisted laparoscopic surgery: a narrative review[J]. Drug Des Devel Ther, 2021, 15: 3893-3901.

[本文引用: 1]

RAUCH S, MILLER C, BRÄUER A, et al. Perioperative hypothermia: a narrative review[J]. Int J Environ Res Public Health, 2021, 18(16): 8749.

[本文引用: 1]

JÎTCĂ G, ŐSZ B E, TERO-VESCAN A, et al. Positive aspects of oxidative stress at different levels of the human body: a review[J]. Antioxidants (Basel), 2022, 11(3): 572.

[本文引用: 1]

SUZUKI K, TAKAZAWA T, SAITO S. History of the development of antagonists for neuromuscular blocking agents[J]. J Anesth, 2020, 34(5): 723-728.

[本文引用: 3]

GUIHARD B, CHOLLET-XÉMARD C, LAKHNATI P, et al. Effect of rocuronium vs succinylcholine on endotracheal intubation success rate among patients undergoing out-of-hospital rapid sequence intubation: a randomized clinical trial[J]. JAMA, 2019, 322(23): 2303-2312.

[本文引用: 1]

SOLTÉSZ S, ALM P, MATHES A, et al. The effect of neuromuscular blockade on the efficiency of facemask ventilation in patients difficult to facemask ventilate: a prospective trial[J]. Anaesthesia, 2017, 72(12): 1484-1490.

[本文引用: 1]

VAN HEES M, SLOTT S, HANSEN A H, et al. New approaches to moderate CRISPR-Cas9 activity: addressing issues of cellular uptake and endosomal escape[J]. Mol Ther, 2022, 30(1): 32-46.

[本文引用: 1]

The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early neuromuscular blockade in the acute respiratory distress syndrome[J]. N Engl J Med, 2019, 380(21): 1997-2008.

[本文引用: 1]

KAULLEN J D, OWEN J S, BROUWER K L R, et al. Pharmacokinetic/pharmacodynamic model of CW002, an investigational intermediate neuromuscular blocking agent, in healthy volunteers[J]. Anesthesiology, 2018, 128(6): 1107-1116.

[本文引用: 1]

RENEW J R, RATZLAFF R, HERNANDEZ-TORRES V, et al. Neuromuscular blockade management in the critically ill patient[J]. J Intensive Care, 2020, 8: 37.

[本文引用: 1]

CHOI E S, OH A Y, SEO K S, et al. Optimum dose of neostigmine to reverse shallow neuromuscular blockade with rocuronium and cisatracurium[J]. Anaesthesia, 2016, 71(4): 443-449.

[本文引用: 1]

JI W T, ZHANG X T, LIU J, et al. Efficacy and safety of neostigmine for neuromuscular blockade reversal in patients under general anesthesia: a systematic review and meta-analysis[J]. Ann Transl Med, 2021, 9(22): 1691.

[本文引用: 1]

DOMENECH G, KAMPEL M A, GARCÍA GUZZO M E, et al. Usefulness of intra-operative neuromuscular blockade monitoring and reversal agents for postoperative residual neuromuscular blockade: a retrospective observational study[J]. BMC Anesthesiol, 2019, 19(1): 143.

[本文引用: 1]

DENG J, BALOUCH M, ALBRINK M, et al. Sugammadex reduces PACU recovery time after abdominal surgery compared with neostigmine[J]. South Med J, 2021, 114(10): 644-648.

[本文引用: 1]

余承晏, 薛庆生, 于布为. 新型肌肉松弛药拮抗剂布瑞亭的临床研究进展[J]. 上海医学, 2018, 41(3): 185-189.

[本文引用: 1]

YU C Y, XUE Q S, YU B W. Progress in clinical research of a new muscle relaxant antagonist brettine[J]. Shanghai Medical Journal, 2018, 41(3): 185-189.

[本文引用: 1]

HAN J, RYU J H, KOO B W, et al. Effects of sugammadex on post-operative pulmonary complications in laparoscopic gastrectomy: a retrospective cohort study[J]. J Clin Med, 2020, 9(4): 1232.

[本文引用: 1]

OLESNICKY B L, TRUMPER R, CHEN V, et al. The use of sugammadex in critical events in anaesthesia: a retrospective review of the webAIRS database[J]. Anaesth Intensive Care, 2022, 50(3): 220-226.

[本文引用: 1]

ORIHARA M, TAKAZAWA T, HORIUCHI T, et al. Comparison of incidence of anaphylaxis between sugammadex and neostigmine: a retrospective multicentre observational study[J]. Br J Anaesth, 2020, 124(2): 154-163.

[本文引用: 1]

DE BOER H D, CARLOS R V. New drug developments for neuromuscular blockade and reversal: gantacurium, CW002, CW011, and calabadion[J]. Curr Anesthesiol Rep, 2018, 8(2): 119-124.

[本文引用: 2]

THEVATHASAN T, GRABITZ S D, SANTER P, et al. Calabadion 1 selectively reverses respiratory and central nervous system effects of fentanyl in a rat model[J]. Br J Anaesth, 2020, 125(1): e140-e147.

[本文引用: 1]

HAERTER F, SIMONS J C P, FOERSTER U, et al. Comparative effectiveness of calabadion and sugammadex to reverse non-depolarizing neuromuscular-blocking agents[J]. Anesthesiology, 2015, 123(6): 1337-1349.

[本文引用: 1]

LIM G, LANDSITTEL D P. Effectiveness versus efficacy of calabadion and sugammadex for nondepolarizing neuromuscular blocking agent reversal[J]. Anesthesiology, 2016, 124(6): 1417.

[本文引用: 1]

/