上海交通大学学报(医学版), 2023, 43(1): 114-119 doi: 10.3969/j.issn.1674-8115.2023.01.015

综述

视网膜母细胞瘤结合锌指蛋白1调控肥胖和肿瘤信号通路研究综述

谢小雷,, 江佩欣, 张敬鸿, 莫骏健, 吴可凡, 曾康逸

广州医科大学附属第六医院/广东省清远市人民医院分子诊断中心,清远 511518

A review of RIZ1 regulation of the signal pathways in obesity and tumors

XIE Xiaolei,, JIANG Peixin, ZHANG Jinghong, MO Junjian, WU Kefan, ZENG Kangyi

Molecular Diagnosis Center, Qingyuan People's Hospital, Guangdong province / The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China

通讯作者: 同上。

编委: 包玲

收稿日期: 2022-09-30   接受日期: 2022-12-10   网络出版日期: 2023-01-28

基金资助: 国家自然科学基金.  82000806
广东省基础与应用基础研究省企联合基金.  2021A1515220118
广东省医学科研基金.  A2020553
清远市科技计划项目.  2018B036

Corresponding authors: XIE Xiaolei, E-mail:yutian_1029@163.com.

Received: 2022-09-30   Accepted: 2022-12-10   Online: 2023-01-28

作者简介 About authors

谢小雷(1985—),男,主管技师,博士;电子信箱:yutian_1029@163.com。 E-mail:yutian_1029@163.com

摘要

视网膜母细胞瘤结合锌指蛋白1(retinoblastoma-interacting zinc finger protein 1,RIZ1)基因,又称PRDM2(positive regulatory domain 2)基因,是PRDM基因家族一员,其蛋白序列包含1个PR结构域、1个核激素受体结合基序、8个锌指结构域和1个视网膜母细胞瘤蛋白(retinoblastoma protein,Rb)相互作用基序。RIZ1主要定位于细胞核内,在核内发挥转录抑制因子、基因调控、蛋白质-蛋白质相互作用等功能。RIZ1是代谢通路的重要参与者,其通过调控代谢相关基因影响基础代谢,抑制肥胖的形成;RIZ1功能突变或含量不足与多种肿瘤发生发展相关,其通过激活下游致癌基因或调控代谢参与肿瘤进程。RIZ1通过v-akt鼠科胸腺瘤病毒癌基因同源物Ⅲ(v-akt murine thymoma viral oncogene homolog 3,AKT3)、胰岛素样生长因子-1(insulin-like growth factor 1,IGF-1),以及作为协同激活剂等方式分别调控AKT/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、IGF-1、雌激素这3条肿瘤和肥胖相关分子信号通路。3条分子通路功能有差异且其下游分子存在交叉,提示RIZ1在不同年龄、性别和器官中的作用可能不同。详细研究RIZ1与RIZ2在代谢进程中的调控作用有助于全面了解RIZ1参与肥胖和肿瘤形成的机制。未来基于RIZ1靶点进行诊断研究或功能恢复可能对代谢性疾病和肿瘤的诊断和治疗有重要意义。

关键词: 视网膜母细胞瘤结合锌指蛋白1 ; PRDM2基因 ; 代谢 ; 肥胖 ; 肿瘤 ; 信号通路

Abstract

Retinoblastoma-interacting zinc finger protein 1 (RIZ1) gene, also known as positive regulatory domain 2 (PRDM2), is a member of the PRDM gene family whose protein sequence consists of a PR domain, a nuclear hormone receptor binding motif, eight zinc finger domains, and an Rb (retinoblastoma protein) interacting motif. RIZ1 is mainly localized in the nucleus, where it plays a role in transcriptional repressor, gene regulation, protein-protein interactions, and other functions. RIZ1 is an important participant in the metabolic pathway, which affects basal metabolism and inhibits the development of obesity by regulating metabolism-related genes; functional mutations or insufficient content of RIZ1 are associated with the development of a variety of tumors, which participate in tumor processes by activating downstream oncogenes or regulating metabolism. RIZ1 regulates three molecular signal pathways, AKT (v-akt murine thymoma viral oncogene homolog)/mTOR (mechanistic target of rapamycin kinase), IGF-1 (insulin-like growth factor 1), and estrogen, in tumors and obesity through AKT3 and IGF-1, respectively, or acting as a co-activator. The functional differences of the three molecular pathways and the crossover of their downstream molecules suggest that RIZ1 may function differently in different ages, genders, and organs. The study of the regulatory role of RIZ1 and RIZ2 in metabolic processes can help to fully understand the mechanism of RIZ1 involvement in obesity and tumor formation. In the future, diagnostic research or functional recovery based on RIZ1 targets may be of great significance for the diagnosis and treatment of metabolic diseases and tumor.

Keywords: retinoblastoma-interacting zinc finger protein 1 (RIZ1) ; PRDM2 gene ; metabolism ; obesity ; tumor ; signal pathway

PDF (1214KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

谢小雷, 江佩欣, 张敬鸿, 莫骏健, 吴可凡, 曾康逸. 视网膜母细胞瘤结合锌指蛋白1调控肥胖和肿瘤信号通路研究综述. 上海交通大学学报(医学版)[J], 2023, 43(1): 114-119 doi:10.3969/j.issn.1674-8115.2023.01.015

XIE Xiaolei, JIANG Peixin, ZHANG Jinghong, MO Junjian, WU Kefan, ZENG Kangyi. A review of RIZ1 regulation of the signal pathways in obesity and tumors. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(1): 114-119 doi:10.3969/j.issn.1674-8115.2023.01.015

视网膜母细胞瘤结合锌指蛋白1(retinoblastoma-interacting zinc finger protein 1,RIZ1)于20世纪90年代首次被克隆1,该蛋白由RIZ1基因[也称PRDM2(positive regulatory domain 2)基因]编码。RIZ1PRDM基因家族一员,其早期被发现具抑制肿瘤形成功能2-3,近年来被发现参与了代谢调控和肥胖4-5。肥胖和肿瘤已成为全球性疾病,流行病学调查6显示肥胖患者易患肿瘤。肿瘤和肥胖是否存在一些共同的致病诱因,或某些分子是否同时参与调控肿瘤和肥胖分子信号通路?对该问题的研究有助于了解肿瘤和肥胖发生的内在机制。本文对RIZ1参与调控肿瘤和肥胖的信号通路加以综述,对其研究中存在的问题和未来应用进行讨论和展望。

1 RIZ1基因定位、结构和功能

RIZ1基因定位于人染色体1p36.13~p36.23区域,主要存在2个转录本,根据是否含PR结构域(PR domain)分为相对分子质量为280 000的RIZ1(PR)以及相对分子质量为250 000的RIZ2(PR7。RIZ1蛋白含有10个外显子,其蛋白序列包含1个PR结构域、1个核激素受体结合基序、8个锌指结构域和1个视网膜母细胞瘤蛋白(retinoblastoma protein,Rb)相互作用基序。RIZ1蛋白中锌指结构与锌离子结合,稳定蛋白α-螺旋结构进而镶嵌于DNA大沟内。RIZ1蛋白具有DNA结合功能,结合位点是GGGCGG和E-box(CANNTG)同类位点CTCATATGAC8。另外,RIZ1蛋白是仅有的几个能通过LXCXE(Leu-X-Cys-X-Glu)结构与Rb蛋白直接结合的蛋白之一9

RIZ1基因中PR结构域与SET结构域[su(var)3-9,enhancer-of-zeste and trithorax domain,SET domain]高度同源,PR结构域通常位于蛋白质N端,而SET结构域位于C端。同源分析显示,PR结构域与SET结构域存在3个序列保守性较强区域,分别命名为A、B、C盒,其中C盒保守性最强;而A、B盒中FGP/W/EQNL(Phe-Gly-Pro/Trp/Glu-Gln-Asn-Leu)序列可作为区分两者的标志10。部分PRDM基因家族成员具有组蛋白甲基转移酶(histone methyltransferase,HMT)活性,RIZ1的PR结构域具有组蛋白H3第9位赖氨酸单甲基化酶(histone H3 lysine 9 mono-methylation,H3K9me1)功能211

RIZ1基因在人类大脑、肝脏、肌肉、心脏和脾脏等组织中广泛表达,尤其在大脑、骨髓、睾丸中表达含量较高。RIZ1高表达是否与维持细胞多能性特征或基因组“重编程”相关仍待探索。RIZ1蛋白定位于细胞核内,基于其结构特点主要在核内发挥着如下功能:① 转录抑制因子12-13,如RIZ1抑制CCNA2(cyclin A2)或UBE2C(ubiquitin conjugating enzyme E2 C)表达,参与细胞周期G0期转换或肿瘤发生发展。② 调控基因表达412,如通过调控L-FabpL-fatty acid binding protein)、Ppara(peroxisome proliferator activated receptor α)、Ubiad1(UbiA prenyltransferase domain containing 1)、Atp5g2[ATP synthase, H+ transporting,mitochondrial F0 complex, subunit C2 (subunit 9)]等基因影响肥胖。③ 蛋白质-蛋白质相互作用14,如RIZ1-雌激素受体(estrogen receptor,ER)、RIZ1-类固醇受体辅助激活因子1(steroid receptor coactivator 1,SRC1)-p300复合物参与雌激素受体通路。RIZ1/PR-SET7复合物对形成“H3K9me1-H4K20me1(histone H4 lysine 20 mono-methylation)”转录调控机制发挥重要作用11。并且组蛋白变体macroH2A1和RIZ1参与乳腺癌易感基因1(breast cancer susceptibility gene 1,BRCA1)介导的双链DNA断裂修复15。RIZ1通过阻滞G2/M期或G0期影响细胞增殖或分化1216;通过v-akt鼠科胸腺瘤病毒癌基因同源物(v-akt murine thymoma viral oncogene homolog,AKT)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)调控细胞代谢4-5;通过c-Jun或c-MYC等参与肿瘤发生发展1317

2 RIZ1与代谢、肥胖

转录因子RIZ1参与调控代谢的研究近年逐渐增多。研究18表明,RIZ1调控胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)基因表达;RIZ1过表达在降低IGF-1受体(IGF-1 receptor,IGF-1R)磷酸化的同时抑制细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)和AKT。IGF-1信号通路促进细胞生长代谢,RIZ1靶向结合并调控IGF-1表明,RIZ1抑制细胞代谢。大鼠实验研究19表明,表观遗传改变导致酒精依赖,酒精依赖会持续降低Riz1表达并调控与突触连接有关基因,且伴随着H3K9me1的水平下降,最终影响酒精成瘾。酒精成瘾与酒精代谢关系密切,RIZ1是否参与酒精代谢目前仍未知。

肥胖已成为全球流行疾病,基础代谢异常是影响肥胖的独立危险因素420Riz1基因全身敲除小鼠(Riz1-/-)出现肥胖,且血清中葡萄糖含量明显升高;葡萄糖耐受实验表明Riz1-/-小鼠葡萄糖调节能力下降;代谢笼实验显示Riz1-/-肥胖小鼠耗氧量和产热量降低,暗示其基础代谢下降4。野生型和Riz1-/-小鼠肝脏差异表达基因主要集中在环境应激、基因表达和细胞分化等方面;Riz1-/-肥胖小鼠肝脏中与脂类和葡萄糖代谢相关的基因表达异常,如L-FabpPpara、PpargUbiad1Atp5g2Cyp4a12[又名Cyp4a12b,cytochrome P450,family 4,subfamily a,polypeptide 12B]等4。故在饮食和运动未改变的情况下,Riz1-/-肥胖小鼠葡萄糖代谢异常、基础代谢下降导致多余能量以脂肪形式储存于体内可能是其肥胖产生的病理机制。肥胖往往伴随代谢紊乱,RIZ1正是影响了相关通路参与到肥胖病程中。现有证据倾向于RIZ1是一个抑制肥胖的基因。

AKT/mTOR信号通路参与调节细胞代谢、增殖、分化、凋亡和糖原合成等多种生理过程21Riz1-/-肥胖小鼠AKT/mTOR信号通路异常激活;RIZ1可结合Akt3启动子区域并调控该基因表达,RIZ1缺失上调Akt3基因表达,激活AKT/mTOR及其下游信号通路4-5。并且Riz1-/-肥胖小鼠基础代谢降低,RIZ1缺失可能影响葡萄糖代谢;而AKT/mTOR通路激活可能进一步加剧了细胞代谢异常。

既往报道显示,Akt3-/-小鼠葡萄糖代谢紊乱、能量合成受损,并且AKT3通过WNK赖氨酸蛋白激酶1(with no lysine protein kinase 1,WNK1)/血清-糖皮质激素调节激酶1(serum-glucocorticoid regulated kinase 1,SGK1)信号通路抑制肥胖形成22。在原代内皮细胞中敲除AKT3可导致线粒体功能下降和基础代谢降低23。最新动物实验表明AKT3或mTOR抑制剂可以抑制Riz1-/-小鼠肥胖(数据未发表)。因此,RIZ1缺失上调Akt3表达进而激活AKT/mTOR信号通路可能是造成Riz1-/-小鼠肥胖的关键分子机制。

3 RIZ1与肿瘤

RIZ1位于染色体的1p36区域,该区域杂合缺失引起单倍基因剂量不足导致多种癌症,如B细胞淋巴瘤、肝癌、垂体腺癌、子宫内膜癌等224RIZ1在多种癌症中表达下降25或有移码突变现象26Riz1-/-小鼠易出现多种肿瘤,尤其是弥漫大B细胞淋巴瘤27。同时,RIZ1在多种肿瘤中启动子CpG岛区发生高甲基化28,并且作为鉴定大肠癌CpG岛甲基化异常的标志基因29

RIZ1PRDM基因家族突变位点最多的基因之一30。该基因中存在2个多聚腺苷酸突变热点区域:外显子8中的(A)8区域发生1 bp缺失以及外显子8中的(A)9区域发生2 bp缺失。这2种突变均提前形成终止密码子翻译成截断的RIZ12631,并且RIZ1中(A)9区域移码突变是胃癌的驱动热点突变区域32。RIZ1中PR结构域甲基化功能丧失是癌症发生的机制之一330

食物中甲硫氨酸代谢为表观遗传提供了甲基供体,而甲硫氨酸代谢能有效调控Riz1表达1017。西方高营养饮食会导致S-腺苷甲硫氨酸(S-adenosylme-thionine,SAM)水平降低,S-腺苷基高半胱氨酸(S-adenosylhomocysteine,SAH)水平升高;SAM/SAH比例下调,进而降低RIZ1表达,破坏特定表观遗传编程导致癌症发生101733。正常饮食中SAM/SAH比例正常,RIZ1表达水平或酶活力维持在较高水平,可以起到预防肿瘤的作用;当饮食营养不均衡时,SAM/SAH比例下降,RIZ1表达水平降低,发生肿瘤的概率升高17。故RIZ1功能降低是饮食致癌的关键因素。

综上,RIZ1通过以下3种方式开启致癌分子机制:① PR结构域的突变或缺失使HMT活性下降。② C末端区域突变影响正常RIZ1合成或干扰蛋白-蛋白相互作用。③表观遗传下调RIZ1表达,导致蛋白水平下降。

RIZ2RIZ1另一个重要转录本,其启动子位于RIZ1基因中第6外显子内16。RIZ1与RIZ2分别以“阴(抑癌)-阳(致癌)”调节的方式参与肿瘤形成10。肿瘤细胞代谢旺盛,提示了RIZ1可能通过调控代谢影响肿瘤。RIZ1作为协助者参与肿瘤进程,其依赖内在HMT活性,通过调控不同靶基因驱动细胞癌变,如调节c-Jun或c-MYC等抑制肿瘤发生1317,阻滞G2/M期或G0期肿瘤细胞抑制肿瘤增殖或分化1216等,且RIZ1表达程度的高低与肿瘤进展程度相关34;RIZ2通过影响G2/M期转变增加细胞可塑性和增殖水平致癌16。RIZ1/RIZ2在不同肿瘤中作用方式可能不同,其具体机制仍待研究。

4 RIZ1调控肥胖和肿瘤信号通路

流行病学数据显示肥胖会增加多种肿瘤风险,且肥胖的肿瘤患者临床管理复杂、愈后不佳35。有证据表明肥胖与某些肿瘤发病率风险升高有关36,肿瘤和肥胖是否存在共同致病分子机制?研究35-37报道,慢性炎症、代谢异常、性激素合成、氧化应激、肿瘤微环境、饮食节律、肠道微生物等是影响肿瘤和肥胖的共同因素。RIZ1与肿瘤和代谢都密切相关。RIZ1是代谢通路的重要参与者或协助者,其有可能通过调控代谢通路参与肥胖及肿瘤的进程,并且饮食是肥胖和肿瘤的共同影响因素,其可以调控RIZ1。基于目前文献可知,RIZ1参与3条调控肿瘤和肥胖相关的分子信号通路:AKT/mTOR通路4-5、IGF-1通路1838和雌激素通路3439-40

4.1 AKT/mTOR通路

磷脂酰肌醇3激酶(phospatidylinositol 3-kinase,PI3K)/AKT/mTOR是连接肿瘤和肥胖的相关信号通路36。该通路可以感知外界环境因素如激素、生长因子等的变化,并调控细胞应激,同时参与包括物质代谢、细胞增殖分化等多种生理过程。PI3K/AKT/mTOR通路通过激活并促进细胞迁移、黏附或血管生成等方式引起细胞癌变41

Riz1-/-肥胖小鼠AKT/mTOR信号通路异常激活,其下游分子S6和真核细胞翻译起始因子4E结合蛋白1(eukaryotic initiation factor 4E-binding protein 1,4EBP1)活性也升高4,且RIZ1直接靶向调控Akt3基因表达5。而AKT上游信号分子PI3K和PTEN(phosphatase and tensin homolog),在野生型和Riz1-/-小鼠中表达并无差异;在肥胖人群中,RIZ1伴随着体质量增加而表达下降(数据未发表)。RIZ1缺失导致AKT/mTOR及其下游信号通路激活可能加剧了糖类物质代谢异常;体内长期AKT/mTOR激活引起代谢异常形成肥胖,进而导致肿瘤,这可能是RIZ1调控癌症和肥胖的共同分子病理机制。

4.2 IGF-1通路

IGF-1在体内广泛参与生长发育,其下游通路异常激活导致多种癌症发生,如前列腺癌、结肠癌、乳腺癌等3642。RIZ1通过IGF-1启动子甲基化抑制该基因表达,进而抑制IGF-1R/ERK/AKT活性18。IGF-1细胞内信号转导依赖于2种途径:PI3K/AKT/mTOR信号轴调节细胞生长分化;RAS(resistance to audiogenic seizures)/加速纤维肉瘤(rapidly accelerated fibrosarcoma,RAF)/丝裂原细胞外信号调节激酶(mitogen extracellular signal-regulated kinase,MEK)/丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号轴调节细胞增殖36。细胞内RIZ1缺失激活AKT有可能是AKT3和IGF-1/IGF-1R两者激活的叠加。

体内代谢能量稳态与IGF-1和癌症关系密切43。肥胖人群血清中IGF-1含量增加,IGF-1下游通路激活通过AKT/mTOR通路或ERK、MAPK等关键分子促进细胞代谢。而RIZ1在肥胖人群中表达降低,并形成了RIZ1/IGF-1/IGF-1R/AKT/ERK调控肥胖代谢的信号轴,该信号轴长期异常可能是癌症发生的根本诱因。此外,限制热量会增强AMPK信号和抑制mTOR活性导致癌细胞死亡37

4.3 雌激素通路

雌激素在女性青春期发育、乳房增生以及生殖功能等方面发挥作用,该通路异常导致多种癌症发生,最常见为乳腺癌3644。雌激素升高是乳腺癌发生发展的主要风险因素44,而RIZ1启动子甲基化在乳腺癌中广泛存在45。研究40显示,RIZ1缺失和雌激素升高有相似的乳腺癌致癌机制,即c-MYC激活。RIZ1的富脯氨酸区域LXXLL(Leu-X-X-Leu-Leu)基序能与雌激素受体结合,RIZ1、Rb和雌激素受体三者可以形成复合物调控下游基因39。RIZ1缺失降低动物对雌激素反应,RIZ1作为雌激素受体协同激活剂依赖于RIZ1-SRC1-p300转录调控复合物调控下游靶基因40。而雌激素受体靶基因启动子区域组蛋白甲基化水平是调控的关键。

雌二醇可以特异性诱导RIZ1在细胞核和细胞质的重新分布39;雌激素可提升RIZ2/RIZ1的比例从1∶1到3∶1,促进细胞增殖40。RIZ2的升高是由于其启动子区含有雌激素反应元件,雌激素可以转录激活RIZ246。此外,RIZ1基因上游调控区存在361 bp雄激素反应元件,故雄激素可上调RIZ1表达34,而雄激素可以在体内芳香化酶作用下转变为雌激素。肥胖人群雌激素水平较高47,且RIZ1在肥胖人群中表达下降。

故RIZ1与雌激素通路在肥胖和肿瘤调控中发挥作用依赖于以下因素:① 雌激素核受体转录调控复合体和HMT活性。② 体内雄激素与雌激素水平以及两者转化。③ RIZ1与RIZ2分别对雄激素与雌激素体内应答,最终基于雌激素通路下游基因或RIZ2/RIZ1调节机制影响代谢和肿瘤。

4.4 分子调控路径比较

AKT/mTOR和IGF-1在细胞内下游调控路径各有偏向且有交叉,AKT是目前发现的两者之间共同的关键分子3648。而AKT/mTOR和雌激素下游通路的调控依赖于RIZ1蛋白水平和RIZ2作用1639-40。IGF-1和雌激素下游通路主要在青少年和成人中发挥作用,老年人群雌激素水平下降与骨质疏松症、心血管疾病高发有关49,而AKT/mTOR在整个生命周期持续存在50,因此推测3种通路在不同年龄和性别中的功能占比可能略有差异,所呈现的代谢和肿瘤等疾病特征也不同。

5 结语

RIZ1参与调控肥胖和肿瘤分子机制的研究不断增多,但存在诸多问题,表现在:① RIZ1调控肥胖及肿瘤文献数量不多,且大多为体外实验,缺少系统的动物实验和临床试验研究。② 文中3条信号通路虽初步勾勒出其可能的分子调控路径,但仍缺乏针对不同人群不同器官的详细分子机制。③ “RIZ1与RIZ2”“雄激素与雌激素”在肥胖和肿瘤中详细的“阴-阳”调节模式有待阐明。虽然存在以上不足,但3条通路仍呈现出RIZ1作为肿瘤和肥胖调控的关键分子的重要意义。未来应深入研究RIZ1的功能机制,探索其作为诊断或功能恢复的靶点,为肥胖和肿瘤等疾病的诊断和治疗提供新分子靶标。

作者贡献声明

谢小雷负责论文构思及撰写,江佩欣、张敬鸿、莫骏健、吴可凡、曾康逸负责收集文献。所有作者阅读并同意了最终稿件的提交。

The manuscript was concepted and written by XIE Xiaolei. The relevant literature was collected by JIANG Peixin, ZHANG Jinghong, MO Junjian, WU Kefan and ZENG Kangyi. All the authors have read the last version of paper and consented for submission.

利益冲突声明

作者声明不存在利益冲突。

All authors disclose no relevant conflict of interests.

参考文献

BUYSE I M, SHAO G, HUANG S. The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A protein[J]. PNAS, 1995, 92(10): 4467-4471.

[本文引用: 1]

CASAMASSIMI A, RIENZO M, DI ZAZZO E, et al. Multifaceted role of PRDM proteins in human cancer[J]. Int J Mol Sci, 2020, 21(7): E2648.

[本文引用: 3]

TANADI C, BAMBANG A, WENDI I P, et al. The predictive value of PRDM2 in solid tumor: a systematic review and meta-analysis[J]. Peer J, 2020, 8: e8826.

[本文引用: 2]

XIE X, MAN X, ZHU Z, et al. Tumor suppressor RIZ1 in obesity and the PI3K/AKT/mTOR pathway[J]. Obesity (Silver Spring), 2016, 24(2): 389-397.

[本文引用: 9]

LIU Q, QU X, XIE X, et al. Repression of Akt3 gene transcription by the tumor suppressor RIZ1[J]. Sci Rep, 2018, 8(1): 1528.

[本文引用: 5]

SCULLY T, ETTELA A, LEROITH D, et al. Obesity, type 2 diabetes, and cancer risk[J]. Front Oncol, 2020, 10: 615375.

[本文引用: 1]

DI TULLIO F, SCHWARZ M, ZORGATI H, et al. The duality of PRDM proteins: epigenetic and structural perspectives[J]. Febs J, 2022, 289(5): 1256-1275.

[本文引用: 1]

XIE M, SHAO G, BUYSE I M, et al. Transcriptional repression mediated by the PR domain zinc finger gene RIZ[J]. J Biol Chem, 1997, 272(42): 26360-26366.

[本文引用: 1]

SUN Y Z, STINE J M, ATWATER D Z, et al. Structural and functional characterization of the acidic region from the RIZ tumor suppressor[J]. Biochemistry, 2015, 54(6): 1390-1400.

[本文引用: 1]

HUANG S. Histone methyltransferases, diet nutrients and tumour suppressors[J]. Nat Rev Cancer, 2002, 2(6): 469-476.

[本文引用: 4]

CONGDON L M, SIMS J K, TUZON C T, et al. The PR-Set7 binding domain of Riz1 is required for the H4K20me1-H3K9me1 trans-tail 'histone code' and Riz1 tumor suppressor function[J]. Nucleic Acids Res, 2014, 42(6): 3580-3589.

[本文引用: 2]

CHEEDIPUDI S, PURI D, SALEH A, et al. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene[J]. Nucleic Acids Res, 2015, 43(13): 6236-6256.

[本文引用: 4]

CAI Z, ZOU Y, HU H, et al. RIZ1 negatively regulates ubiquitin-conjugating enzyme E2C/UbcH10 via targeting c-Myc in meningioma[J]. Am J Transl Res, 2017, 9(5): 2645-2655.

[本文引用: 3]

CARLING T, KIM K C, YANG X H et al. A histone methyltransferase is required for maximal response to female sex hormones[J]. Mol Cell Biol, 2004, 24(16): 7032-7042.

[本文引用: 1]

KHURANA S, KRUHLAK M J, KIM J, et al. A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance[J]. Cell Rep, 2014, 8(4): 1049-1062.

[本文引用: 1]

RIENZO M, SORRENTINO A, DI ZAZZO E, et al. Searching for a putative mechanism of RIZ2 tumor-promoting function in cancer models[J]. Front Oncol, 2020, 10: 583533.

[本文引用: 5]

ZHOU W, ALONSO S, TAKAI D, et al. Requirement of RIZ1 for cancer prevention by methyl-balanced diet[J]. PLoS One, 2008, 3(10): e3390.

[本文引用: 5]

PASTURAL E, TAKAHASHI N, DONG W F, et al. RIZ1 repression is associated with insulin-like growth factor-1 signaling activation in chronic myeloid leukemia cell lines[J]. Oncogene, 2007, 26(11): 1586-1594.

[本文引用: 3]

BARBIER E, JOHNSTONE A L, KHOMTCHOUK B B, et al. Dependence-induced increase of alcohol self-administration and compulsive drinking mediated by the histone methyltransferase PRDM2[J]. Mol Psychiatry, 2017, 22(12): 1746-1758.

[本文引用: 1]

The Lancet Diabetes Endocrinology. Childhood obesity: a growing pandemic[J]. Lancet Diabetes Endocrinol, 2022, 10(1): 1.

[本文引用: 1]

LUO Q, DU R, LIU W, et al. PI3K/Akt/mTOR signaling pathway: role in esophageal squamous cell carcinoma, regulatory mechanisms and opportunities for targeted therapy[J]. Front Oncol, 2022, 12: 852383.

[本文引用: 1]

DING L, ZHANG L, BISWAS S, et al. Akt3 inhibits adipogenesis and protects from diet-induced obesity via WNK1/SGK1 signaling[J]. JCI Insight, 2017, 2(22): 95687.

[本文引用: 1]

CORUM D G, JENKINS D P, HESLOP J A, et al. PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression[J]. J Biol Chem, 2020, 295(52): 18091-18104.

[本文引用: 1]

NADERI A. Genomic and epigenetic aberrations of chromosome 1p36.13 have prognostic implications in malignancies[J]. Chromosome Res, 2020, 28(3/4): 307-330.

[本文引用: 1]

YANG S, LIU T, CHENG H, et al. Decreased expression of retinoblastoma protein-interacting zinc-finger gene 1 is correlated with poor survival and aggressiveness of cervical cancer patients[J]. Front Oncol, 2019, 9: 1396.

[本文引用: 1]

PIAO Z, FANG W, MALKHOSYAN S, et al. Frequent frameshift mutations of RIZ in sporadic gastrointestinal and endometrial carcinomas with microsatellite instability[J]. Cancer Res, 2000, 60(17): 4701-4704.

[本文引用: 2]

STEELE-PERKINS G, FANG W, YANG X H, et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily[J]. Genes Dev, 2001, 15(17): 2250-2262.

[本文引用: 1]

GURU S A, SUMI M P, MIR R, et al. Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib respondents and poor survival[J]. BMC Cancer, 2022, 22(1): 405.

[本文引用: 1]

SHEN L, TOYOTA M, KONDO Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer[J]. PNAS, 2007, 104(47): 18654-18659.

[本文引用: 1]

SORRENTINO A, FEDERICO A, RIENZO M, et al. PR/SET domain family and cancer: novel insights from the cancer genome atlas[J]. Int J Mol Sci, 2018, 19(10): E3250.

[本文引用: 2]

PANDZIC T, RENDO V, LIM J, et al. Somatic PRDM2 c.4467delA mutations in colorectal cancers control histone methylation and tumor growth[J]. Oncotarget, 2017, 8(58): 98646-98659.

[本文引用: 1]

MARUVKA Y E, MOUW K W, KARLIC R, et al. Analysis of somatic microsatellite indels identifies driver events in human tumors[J]. Nat Biotechnol, 2017, 35(10): 951-959.

[本文引用: 1]

BARRERO M J, CEJAS P, LONG H W, et al. Nutritional epigenetics in cancer[J]. Adv Nutr, 2022, 13(5): 1748-1761.

[本文引用: 1]

ROSSI V, STAIBANO S, ABBONDANZA C, et al. Expression of RIZ1 protein (retinoblastoma-interacting zinc-finger protein 1) in prostate cancer epithelial cells changes with cancer grade progression and is modulated in vitro by DHT and E2[J]. J Cell Physiol, 2009, 221(3): 771-777.

[本文引用: 3]

KOLB R, SUTTERWALA F S, ZHANG W. Obesity and cancer: inflammation bridges the two[J]. Curr Opin Pharmacol, 2016, 29: 77-89.

[本文引用: 2]

AVGERINOS K I, SPYROU N, MANTZOROS C S, et al. Obesity and cancer risk: emerging biological mechanisms and perspectives[J]. Metabolism, 2019, 92: 121-135.

[本文引用: 6]

KEY T J, BRADBURY K E, PEREZ-CORNAGO A, et al. Diet, nutrition, and cancer risk: what do we know and what is the way forward?[J]. BMJ, 2020, 368: m511.

[本文引用: 2]

LAKSHMIKUTTYAMMA A, PASTURAL E, TAKAHASHI N, et al. Bcr-Abl induces autocrine IGF-1 signaling[J]. Oncogene, 2008, 27(27): 3831-3844.

[本文引用: 1]

ABBONDANZA C, MEDICI N, NIGRO V, et al. The retinoblastoma-interacting zinc-finger protein RIZ is a downstream effector of estrogen action[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3130-3135.

[本文引用: 4]

GAZZERRO P, ABBONDANZA C, D'ARCANGELO A, et al. Modulation of RIZ gene expression is associated to estradiol control of MCF-7 breast cancer cell proliferation[J]. Exp Cell Res, 2006, 312(3): 340-349.

[本文引用: 5]

YI J, ZHU J, WU J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(49): 31189-31197.

[本文引用: 1]

SAIR A T, LIU R H. Molecular regulation of phenolic compounds on IGF-1 signaling cascade in breast cancer[J]. Food Funct, 2022, 13(6): 3170-3184.

[本文引用: 1]

RODRÍGUEZ-VALENTÍN R, TORRES-MEJÍA G, MARTÍNEZ-MATSUSHITA L, et al. Energy homeostasis genes modify the association between serum concentrations of IGF-1 and IGFBP-3 and breast cancer risk[J]. Sci Rep, 2022, 12(1): 1837.

[本文引用: 1]

OSTLUND T, ALOTAIBI F, KYEREMATENG J, et al. Triazole-estradiol analogs: a potential cancer therapeutic targeting ovarian and colorectal cancer[J]. Steroids, 2022, 177: 108950.

[本文引用: 2]

DU Y, CARLING T, FANG W, et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily[J]. Cancer Res, 2001, 61(22): 8094-8099.

[本文引用: 1]

ABBONDANZA C, DE ROSA C, D'ARCANGELO A, et al. Identification of a functional estrogen-responsive enhancer element in the promoter 2 of PRDM2 gene in breast cancer cell lines[J]. J Cell Physiol, 2012, 227(3): 964-975.

[本文引用: 1]

SAAVEDRA-PEÑA R D M, TAYLOR N, RODEHEFFER M S. Insights of the role of estrogen in obesity from two models of ERα deletion[J]. J Mol Endocrinol, 2022, 68(4): 179-194.

[本文引用: 1]

DAI L, WEISS R B, DUNN D M, et al. Core transcriptional networks in Williams syndrome: IGF1-PI3K-AKT-mTOR, MAPK and actin signaling at the synapse echo autism[J]. Hum Mol Genet, 2021, 30(6): 411-429.

[本文引用: 1]

PRABAKARAN S, VITTER S, LUNDBERG G. Cardiovascular disease in women update: ischemia, diagnostic testing, and menopause hormone therapy[J]. Endocr Pract, 2022, 28(2): 199-203.

[本文引用: 1]

YALÇIN M, KAÇAR M. Investigation of the hepatic mTOR/S6K1/SREBP1 signalling pathway in rats at different ages: from neonates to adults[J]. Mol Biol Rep, 2021, 48(11): 7415-7422.

[本文引用: 1]

/