Human serum albumin (HSA) is one of the most abundant proteins in the plasma which participate in plenty of physiological functions. This article reviews recent advances in HSA-related researches with respect to its synthesis, metabolism, structure, function, and clinical application in decompensated cirrhosis and its adverse events. As a multidomain polyfunctional molecule, HSA has not only shown its effect on colloid osmotic pressure elevation, but also its non-colloid functions including ligand binding capacity, antioxidant ability, immunoregulatory effect, and maintaining the stability of endothelium and permeability of capillary. However, the structure of HSA is easily affected by pathology surroundings including various posttranslational modifications of HSA, such as truncated N-terminal or C-terminal, glycosylation, and oxidation of Cys-34. Among these, the oxidation modification of Cys-34 in HSA is closely related to cirrhosis progression and has a strong prognostic ability of clinical outcomes. Besides prevention of post paracentesis circulatory dysfunction, HSA administration also shows excellent treatment potentials in the cirrhotic complications, including hepatorenal syndrome (HRS) and spontaneous peritonitis (SBP). Furthermore, more clinical trials are needed to discuss the potential benefits of HSA in non-SBP infection, long-term administration of ascites, hepatic encephalopathy, acute-on-chronic liver failure (ACLF) and other cirrhotic complications.
自发性腹膜炎(spontaneous peritonitis,SBP)在失代偿期肝硬化患者中的发生率和复发率较高,且预后差。HSA通过增加心脏前负荷,降低外周血管阻力,减少细菌移位,结合NO、TNF-α、IL-6等分子,降低凝血因子Ⅷ水平,稳定内皮细胞等,发挥其多效生物学功能,从而减轻SBP患者的体液潴留,限制炎症发展。SBP确诊后予以抗生素联合HSA输注(第1日、第2日1.5 g/kg,第3日减至1 g/kg),相较单纯抗生素治疗感染治愈率无明显差异,但肾功能损伤发生率(10% vs 33%,P=0.002)、住院死亡率(10% vs 29%,P=0.01)以及3个月死亡率(22% vs 41%,P=0.03)显著降低[24]。
5.2 尚有争议的HSA临床应用
5.2.1 非SBP感染
通过介导免疫调控,HSA可以结合或灭活前列腺素E2,从而增强巨噬细胞分泌细胞因子和杀菌的功能,逆转失代偿期肝硬化的免疫抑制状态。HSA还能提升循环中的TNF-α水平,发挥其抗炎作用[25]。然而在非SBP的细菌感染中,尽管HSA联合抗生素比单用抗生素治疗缩短了感染进程,改善了循环功能,延缓了肾衰竭的发生[(29±22)d vs (12±9)d,P=0.018)],但3个月的肾衰竭发生率(14.3% vs 13.5%,P=0.88)和3个月存活率(70.2% vs 78.3%,P=0.16)均未出现明显差异[26]。另一项关于肝硬化非SBP感染的研究[27]结果显示,HSA联合抗生素组与单用抗生素组院内死亡率(13.1% vs 10.4%,P=0.66)无显著差异,但HSA联合抗生素组的ACLF缓解率(82.3% vs 33.3%,P=0.03)高于抗生素组,院内感染发生率(6.6% vs 24.6%,P=0.007)则低于抗生素组。HSA在非SBP感染中的效益还有待进一步验证。
5.2.2 肝硬化腹水长期治疗
最近失代偿期肝硬化腹水患者使用HSA长期治疗的获益也得到了几个大型临床试验的证据支持。ANSWER研究及其事后分析[28]发现腹水常规治疗加用HSA后可提升患者18个月生存率(77% vs 66%,P=0.028),降低38%的死亡风险[HR=0.62(95%CI 0.40~0.95)],并减少难治性腹水、肝性脑病、HRS、感染等并发症的发生率,且输注HSA 1个月后的HSA浓度(临界值40 g/L)可预测患者18个月生存率。PRECIOSA研究[29]进一步发现仅高剂量HSA(每周1.5 g/kg)治疗能够提升HSA水平(高剂量组vs低剂量组血清HSA水平变化值:12.7 g/L vs 5.7 g/L,P=0.01),治疗后HSA浓度达到40 g/L时血浆内肾素和炎症细胞因子水平降低。MATCH研究[30]纳入了肝移植等待人群,对比安慰剂组,施用盐酸米多君(15~30 mg/d)加HSA(2周40 g)后发现血浆肾素活性和醛固酮水平轻微下降,但肝硬化并发症的发生率(37% vs 43%,P=0.402)和1年内死亡率(7% vs 5%,P=0.527)无明显差异。ATTIRE研究[31]中,HSA输注达到目标血清浓度35 g/L后并未发现并发症发生及死亡率的改善(29.7% vs 30.2%,P=0.87),而肺水肿、体液负荷过多等不良事件发生明显增加。鉴于上述研究的人群背景和HSA的给药策略都存在较大异质性,HSA长期治疗肝硬化腹水还需更多证据评价其获益最佳人群及成本效益。
5.2.3 肝性脑病
低白蛋白血症时游离色氨酸水平增高,易透过血脑屏障引发神经炎症。研究[28]表明HSA可拮抗肝性脑病相关的肌肉分解和代谢紊乱,从而降低肝性脑病的发生率;亦有研究[32]发现对于肝性脑病(Ⅱ~Ⅳ级)急性发作的肝硬化患者,HSA治疗4 d后症状改善率无明显变化(HSA组 vs 生理盐水组:57.7% vs 53.3%,P>0.05),但3个月生存率显著提高(69.2% vs 40.0%,P=0.02)。目前HSA在失代偿期肝硬化患者肝性脑病中的应用需更严格的临床研究评价其获益。
The study information was retrieved by ZHANG Chenxi. The topic selection and design was carried out by CAO Zhujun and XIE Qing. The manuscript was drafted by ZHANG Chenxi. The manuscript was revised by GENG Jiawei, XIE Qing and XIANG Xiaogang. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
All authors disclose no relevant conflict of interests.
MOREAU R, JALAN R, GINES P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis[J]. Gastroenterology, 2013, 144(7): 1426-1437, 1437.e1-9.
DOMENICALI M, BALDASSARRE M, GIANNONE F A, et al. Posttranscriptional changes of serum albumin: clinical and prognostic significance in hospitalized patients with cirrhosis[J]. Hepatology, 2014, 60(6): 1851-1860.
HENRIKSEN J H, SIEMSSEN O, KRINTEL J J, et al. Dynamics of albumin in plasma and ascitic fluid in patients with cirrhosis[J]. J Hepatol, 2001, 34(1): 53-60.
BHATTACHARYA A A, GRÜNE T, CURRY S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin[J]. J Mol Biol, 2000, 303(5): 721-732.
EVANS T W. Review article: albumin as a drug: biological effects of albumin unrelated to oncotic pressure[J]. Aliment Pharmacol Ther, 2002, 16(Suppl 5): 6-11.
CHEN T A, TSAO Y C, CHEN A, et al. Effect of intravenous albumin on endotoxin removal, cytokines, and nitric oxide production in patients with cirrhosis and spontaneous bacterial peritonitis[J]. Scand J Gastroenterol, 2009, 44(5): 619-625.
CASULLERAS M, FLORES-COSTA R, DURAN-GÜELL M, et al. Albumin internalizes and inhibits endosomal TLR signaling in leukocytes from patients with decompensated cirrhosis[J]. Sci Transl Med, 2020, 12(566): eaax5135.
DAS S, MARAS J S, HUSSAIN M S, et al. Hyperoxidized albumin modulates neutrophils to induce oxidative stress and inflammation in severe alcoholic hepatitis[J]. Hepatology, 2017, 65(2): 631-646.
LANG J D Jr, FIGUEROA M, CHUMLEY P, et al. Albumin and hydroxyethyl starch modulate oxidative inflammatory injury to vascular endothelium[J]. Anesthesiology, 2004, 100(1): 51-58.
BORTOLUZZI A, CEOLOTTO G, GOLA E, et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms[J]. Hepatology, 2013, 57(1): 266-276.
SHASTHRY S M, KUMAR M, KHUMUCKHAM J S, et al. Changes in cardiac output and incidence of volume overload in cirrhotics receiving 20% albumin infusion[J]. Liver Int, 2017, 37(8): 1167-1176.
OETTL K, BIRNER-GRUENBERGER R, SPINDELBOECK W, et al. Oxidative albumin damage in chronic liver failure: relation to albumin binding capacity, liver dysfunction and survival[J]. J Hepatol, 2013, 59(5): 978-983.
BALDASSARRE M, NALDI M, ZACCHERINI G, et al. Determination of effective albumin in patients with decompensated cirrhosis: clinical and prognostic implications[J]. Hepatology, 2021, 74(4): 2058-2073.
ALCARAZ-QUILES J, CASULLERAS M, OETTL K, et al. Oxidized albumin triggers a cytokine storm in leukocytes through P38 mitogen-activated protein kinase: role in systemic inflammation in decompensated cirrhosis[J]. Hepatology, 2018, 68(5): 1937-1952.
STAUBER R E, SPINDELBOECK W, HAAS J, et al. Human nonmercaptalbumin-2: a novel prognostic marker in chronic liver failure[J]. Ther Apher Dial, 2014, 18(1): 74-78.
BALDASSARRE M, DOMENICALI M, NALDI M, et al. Albumin homodimers in patients with cirrhosis: clinical and prognostic relevance of a novel identified structural alteration of the molecule[J]. Sci Rep, 2016, 6: 35987.
VAN BELLE E, DALLONGEVILLE J, VICAUT E, et al. Ischemia-modified albumin levels predict long-term outcome in patients with acute myocardial infarction. The French Nationwide OPERA study[J]. Am Heart J, 2010, 159(4): 570-576.
GIANNONE F A, DOMENICALI M, BALDASSARRE M, et al. Ischaemia-modified albumin: a marker of bacterial infection in hospitalized patients with cirrhosis[J]. Liver Int, 2015, 35(11): 2425-2432.
BHAT A, DAS S, YADAV G, et al. Hyperoxidized albumin modulates platelets and promotes inflammation through CD36 receptor in severe alcoholic hepatitis[J]. Hepatol Commun, 2019, 4(1): 50-65.
CAVALLIN M, KAMATH P S, MERLI M, et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial[J]. Hepatology, 2015, 62(2): 567-574.
SORT P, NAVASA M, ARROYO V, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis[J]. N Engl J Med, 1999, 341(6): 403-409.
O'BRIEN A J, FULLERTON J N, MASSEY K A, et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2[J]. Nat Med, 2014, 20(5): 518-523.
GUEVARA M, TERRA C, NAZAR A, et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study[J]. J Hepatol, 2012, 57(4): 759-765.
FERNÁNDEZ J, ANGELI P, TREBICKA J, et al. Efficacy of albumin treatment for patients with cirrhosis and infections unrelated to spontaneous bacterial peritonitis[J]. Clin Gastroenterol Hepatol, 2020, 18(4): 963-973.e14.
CARACENI P, RIGGIO O, ANGELI P, et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial[J]. Lancet, 2018, 391(10138): 2417-2429.
FERNÁNDEZ J, CLÀRIA J, AMORÓS A, et al. Effects of albumin treatment on systemic and portal hemodynamics and systemic inflammation in patients with decompensated cirrhosis[J]. Gastroenterology, 2019, 157(1): 149-162.
SOLÀ E, SOLÉ C, SIMÓN-TALERO M, et al. Midodrine and albumin for prevention of complications in patients with cirrhosis awaiting liver transplantation. A randomized placebo-controlled trial[J]. J Hepatol, 2018, 69(6): 1250-1259.
CHINA L, FREEMANTLE N, FORREST E, et al. A randomized trial of albumin infusions in hospitalized patients with cirrhosis[J]. N Engl J Med, 2021, 384(9): 808-817.
SIMÓN-TALERO M, GARCÍA-MARTÍNEZ R, TORRENS M, et al. Effects of intravenous albumin in patients with cirrhosis and episodic hepatic encephalopathy: a randomized double-blind study[J]. J Hepatol, 2013, 59(6): 1184-1192.
ZHOU T, LU S H, LIU X F, et al. Review of the rational use and adverse reactions to human serum albumin in the People's Republic of China[J]. Patient Prefer Adherence, 2013, 7: 1207-1212.
TRULL A, HUGHES V, COOPER D, et al. Influence of albumin supplementation on tacrolimus and cyclosporine therapy early after liver transplantation[J]. Liver Transpl, 2002, 8(3): 224-232.
BERN M, NILSEN J, FERRARESE M, et al. An engineered human albumin enhances half-life and transmucosal delivery when fused to protein-based biologics[J]. Sci Transl Med, 2020, 12(565): eabb0580.
TAGUCHI K, URATA Y, ANRAKU M, et al. Superior plasma retention of a cross-linked human serum albumin dimer in nephrotic rats as a new type of plasma expander[J]. Drug Metab Dispos, 2010, 38(12): 2124-2129.
... 自发性腹膜炎(spontaneous peritonitis,SBP)在失代偿期肝硬化患者中的发生率和复发率较高,且预后差.HSA通过增加心脏前负荷,降低外周血管阻力,减少细菌移位,结合NO、TNF-α、IL-6等分子,降低凝血因子Ⅷ水平,稳定内皮细胞等,发挥其多效生物学功能,从而减轻SBP患者的体液潴留,限制炎症发展.SBP确诊后予以抗生素联合HSA输注(第1日、第2日1.5 g/kg,第3日减至1 g/kg),相较单纯抗生素治疗感染治愈率无明显差异,但肾功能损伤发生率(10% vs 33%,P=0.002)、住院死亡率(10% vs 29%,P=0.01)以及3个月死亡率(22% vs 41%,P=0.03)显著降低[24]. ...
1
... 通过介导免疫调控,HSA可以结合或灭活前列腺素E2,从而增强巨噬细胞分泌细胞因子和杀菌的功能,逆转失代偿期肝硬化的免疫抑制状态.HSA还能提升循环中的TNF-α水平,发挥其抗炎作用[25].然而在非SBP的细菌感染中,尽管HSA联合抗生素比单用抗生素治疗缩短了感染进程,改善了循环功能,延缓了肾衰竭的发生[(29±22)d vs (12±9)d,P=0.018)],但3个月的肾衰竭发生率(14.3% vs 13.5%,P=0.88)和3个月存活率(70.2% vs 78.3%,P=0.16)均未出现明显差异[26].另一项关于肝硬化非SBP感染的研究[27]结果显示,HSA联合抗生素组与单用抗生素组院内死亡率(13.1% vs 10.4%,P=0.66)无显著差异,但HSA联合抗生素组的ACLF缓解率(82.3% vs 33.3%,P=0.03)高于抗生素组,院内感染发生率(6.6% vs 24.6%,P=0.007)则低于抗生素组.HSA在非SBP感染中的效益还有待进一步验证. ...
1
... 通过介导免疫调控,HSA可以结合或灭活前列腺素E2,从而增强巨噬细胞分泌细胞因子和杀菌的功能,逆转失代偿期肝硬化的免疫抑制状态.HSA还能提升循环中的TNF-α水平,发挥其抗炎作用[25].然而在非SBP的细菌感染中,尽管HSA联合抗生素比单用抗生素治疗缩短了感染进程,改善了循环功能,延缓了肾衰竭的发生[(29±22)d vs (12±9)d,P=0.018)],但3个月的肾衰竭发生率(14.3% vs 13.5%,P=0.88)和3个月存活率(70.2% vs 78.3%,P=0.16)均未出现明显差异[26].另一项关于肝硬化非SBP感染的研究[27]结果显示,HSA联合抗生素组与单用抗生素组院内死亡率(13.1% vs 10.4%,P=0.66)无显著差异,但HSA联合抗生素组的ACLF缓解率(82.3% vs 33.3%,P=0.03)高于抗生素组,院内感染发生率(6.6% vs 24.6%,P=0.007)则低于抗生素组.HSA在非SBP感染中的效益还有待进一步验证. ...
1
... 通过介导免疫调控,HSA可以结合或灭活前列腺素E2,从而增强巨噬细胞分泌细胞因子和杀菌的功能,逆转失代偿期肝硬化的免疫抑制状态.HSA还能提升循环中的TNF-α水平,发挥其抗炎作用[25].然而在非SBP的细菌感染中,尽管HSA联合抗生素比单用抗生素治疗缩短了感染进程,改善了循环功能,延缓了肾衰竭的发生[(29±22)d vs (12±9)d,P=0.018)],但3个月的肾衰竭发生率(14.3% vs 13.5%,P=0.88)和3个月存活率(70.2% vs 78.3%,P=0.16)均未出现明显差异[26].另一项关于肝硬化非SBP感染的研究[27]结果显示,HSA联合抗生素组与单用抗生素组院内死亡率(13.1% vs 10.4%,P=0.66)无显著差异,但HSA联合抗生素组的ACLF缓解率(82.3% vs 33.3%,P=0.03)高于抗生素组,院内感染发生率(6.6% vs 24.6%,P=0.007)则低于抗生素组.HSA在非SBP感染中的效益还有待进一步验证. ...
2
... 最近失代偿期肝硬化腹水患者使用HSA长期治疗的获益也得到了几个大型临床试验的证据支持.ANSWER研究及其事后分析[28]发现腹水常规治疗加用HSA后可提升患者18个月生存率(77% vs 66%,P=0.028),降低38%的死亡风险[HR=0.62(95%CI 0.40~0.95)],并减少难治性腹水、肝性脑病、HRS、感染等并发症的发生率,且输注HSA 1个月后的HSA浓度(临界值40 g/L)可预测患者18个月生存率.PRECIOSA研究[29]进一步发现仅高剂量HSA(每周1.5 g/kg)治疗能够提升HSA水平(高剂量组vs低剂量组血清HSA水平变化值:12.7 g/L vs 5.7 g/L,P=0.01),治疗后HSA浓度达到40 g/L时血浆内肾素和炎症细胞因子水平降低.MATCH研究[30]纳入了肝移植等待人群,对比安慰剂组,施用盐酸米多君(15~30 mg/d)加HSA(2周40 g)后发现血浆肾素活性和醛固酮水平轻微下降,但肝硬化并发症的发生率(37% vs 43%,P=0.402)和1年内死亡率(7% vs 5%,P=0.527)无明显差异.ATTIRE研究[31]中,HSA输注达到目标血清浓度35 g/L后并未发现并发症发生及死亡率的改善(29.7% vs 30.2%,P=0.87),而肺水肿、体液负荷过多等不良事件发生明显增加.鉴于上述研究的人群背景和HSA的给药策略都存在较大异质性,HSA长期治疗肝硬化腹水还需更多证据评价其获益最佳人群及成本效益. ...
... 低白蛋白血症时游离色氨酸水平增高,易透过血脑屏障引发神经炎症.研究[28]表明HSA可拮抗肝性脑病相关的肌肉分解和代谢紊乱,从而降低肝性脑病的发生率;亦有研究[32]发现对于肝性脑病(Ⅱ~Ⅳ级)急性发作的肝硬化患者,HSA治疗4 d后症状改善率无明显变化(HSA组 vs 生理盐水组:57.7% vs 53.3%,P>0.05),但3个月生存率显著提高(69.2% vs 40.0%,P=0.02).目前HSA在失代偿期肝硬化患者肝性脑病中的应用需更严格的临床研究评价其获益. ...
1
... 最近失代偿期肝硬化腹水患者使用HSA长期治疗的获益也得到了几个大型临床试验的证据支持.ANSWER研究及其事后分析[28]发现腹水常规治疗加用HSA后可提升患者18个月生存率(77% vs 66%,P=0.028),降低38%的死亡风险[HR=0.62(95%CI 0.40~0.95)],并减少难治性腹水、肝性脑病、HRS、感染等并发症的发生率,且输注HSA 1个月后的HSA浓度(临界值40 g/L)可预测患者18个月生存率.PRECIOSA研究[29]进一步发现仅高剂量HSA(每周1.5 g/kg)治疗能够提升HSA水平(高剂量组vs低剂量组血清HSA水平变化值:12.7 g/L vs 5.7 g/L,P=0.01),治疗后HSA浓度达到40 g/L时血浆内肾素和炎症细胞因子水平降低.MATCH研究[30]纳入了肝移植等待人群,对比安慰剂组,施用盐酸米多君(15~30 mg/d)加HSA(2周40 g)后发现血浆肾素活性和醛固酮水平轻微下降,但肝硬化并发症的发生率(37% vs 43%,P=0.402)和1年内死亡率(7% vs 5%,P=0.527)无明显差异.ATTIRE研究[31]中,HSA输注达到目标血清浓度35 g/L后并未发现并发症发生及死亡率的改善(29.7% vs 30.2%,P=0.87),而肺水肿、体液负荷过多等不良事件发生明显增加.鉴于上述研究的人群背景和HSA的给药策略都存在较大异质性,HSA长期治疗肝硬化腹水还需更多证据评价其获益最佳人群及成本效益. ...
1
... 最近失代偿期肝硬化腹水患者使用HSA长期治疗的获益也得到了几个大型临床试验的证据支持.ANSWER研究及其事后分析[28]发现腹水常规治疗加用HSA后可提升患者18个月生存率(77% vs 66%,P=0.028),降低38%的死亡风险[HR=0.62(95%CI 0.40~0.95)],并减少难治性腹水、肝性脑病、HRS、感染等并发症的发生率,且输注HSA 1个月后的HSA浓度(临界值40 g/L)可预测患者18个月生存率.PRECIOSA研究[29]进一步发现仅高剂量HSA(每周1.5 g/kg)治疗能够提升HSA水平(高剂量组vs低剂量组血清HSA水平变化值:12.7 g/L vs 5.7 g/L,P=0.01),治疗后HSA浓度达到40 g/L时血浆内肾素和炎症细胞因子水平降低.MATCH研究[30]纳入了肝移植等待人群,对比安慰剂组,施用盐酸米多君(15~30 mg/d)加HSA(2周40 g)后发现血浆肾素活性和醛固酮水平轻微下降,但肝硬化并发症的发生率(37% vs 43%,P=0.402)和1年内死亡率(7% vs 5%,P=0.527)无明显差异.ATTIRE研究[31]中,HSA输注达到目标血清浓度35 g/L后并未发现并发症发生及死亡率的改善(29.7% vs 30.2%,P=0.87),而肺水肿、体液负荷过多等不良事件发生明显增加.鉴于上述研究的人群背景和HSA的给药策略都存在较大异质性,HSA长期治疗肝硬化腹水还需更多证据评价其获益最佳人群及成本效益. ...
1
... 最近失代偿期肝硬化腹水患者使用HSA长期治疗的获益也得到了几个大型临床试验的证据支持.ANSWER研究及其事后分析[28]发现腹水常规治疗加用HSA后可提升患者18个月生存率(77% vs 66%,P=0.028),降低38%的死亡风险[HR=0.62(95%CI 0.40~0.95)],并减少难治性腹水、肝性脑病、HRS、感染等并发症的发生率,且输注HSA 1个月后的HSA浓度(临界值40 g/L)可预测患者18个月生存率.PRECIOSA研究[29]进一步发现仅高剂量HSA(每周1.5 g/kg)治疗能够提升HSA水平(高剂量组vs低剂量组血清HSA水平变化值:12.7 g/L vs 5.7 g/L,P=0.01),治疗后HSA浓度达到40 g/L时血浆内肾素和炎症细胞因子水平降低.MATCH研究[30]纳入了肝移植等待人群,对比安慰剂组,施用盐酸米多君(15~30 mg/d)加HSA(2周40 g)后发现血浆肾素活性和醛固酮水平轻微下降,但肝硬化并发症的发生率(37% vs 43%,P=0.402)和1年内死亡率(7% vs 5%,P=0.527)无明显差异.ATTIRE研究[31]中,HSA输注达到目标血清浓度35 g/L后并未发现并发症发生及死亡率的改善(29.7% vs 30.2%,P=0.87),而肺水肿、体液负荷过多等不良事件发生明显增加.鉴于上述研究的人群背景和HSA的给药策略都存在较大异质性,HSA长期治疗肝硬化腹水还需更多证据评价其获益最佳人群及成本效益. ...
1
... 低白蛋白血症时游离色氨酸水平增高,易透过血脑屏障引发神经炎症.研究[28]表明HSA可拮抗肝性脑病相关的肌肉分解和代谢紊乱,从而降低肝性脑病的发生率;亦有研究[32]发现对于肝性脑病(Ⅱ~Ⅳ级)急性发作的肝硬化患者,HSA治疗4 d后症状改善率无明显变化(HSA组 vs 生理盐水组:57.7% vs 53.3%,P>0.05),但3个月生存率显著提高(69.2% vs 40.0%,P=0.02).目前HSA在失代偿期肝硬化患者肝性脑病中的应用需更严格的临床研究评价其获益. ...