Malignant tumors are common diseases that threaten human health. Early diagnosis and complete resection can significantly improve the prognosis of patients with malignant tumors. At present, the imaging techniques used clinically for malignant tumor detection have problems such as poor sensitivity and temporal-spatial resolution, long scanning time, etc., which cannot achieve early diagnosis and meet the requirements of surgical navigation. As a new imaging technology with excellent imaging characteristics, fluorescence imaging can perform real-time imaging of the structure and function of biological tissues and organs. It can realize the accurate detection of malignant tumors by designing fluorescent probes with high sensitivity, high selectivity and specificity. The sensitivity of fluorescence imaging mainly depends on the fluorophore of the probe, and the selectivity and specificity mainly depend on whether the probe adopts an effective targeting strategy. Studies have shown that near infrared fluorophores with emission wavelengths in the near infrared window, especially those in the near infrared Ⅱ window, have excellent optical properties, which can effectively improve the sensitivity of fluorescence imaging of malignant tumors; at the same time, based on the unique structure and metabolic features of malignant tumors, various targeting strategies have been developed to design "always-on" fluorescent probes and "turn-on" fluorescent probes, which significantly improved the selectivity and specificity of fluorescent imaging of malignant tumors. In this paper, the newly developed near infrared fluorophores and the strategies of fluorescent probes targeting malignant tumors are reviewed.
WANG Wenbo, ZHANG Fangrong, SHI Tingwang, CHEN Yunfeng. Advances in fluorescence imaging of malignant tumors. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(4): 474-479 doi:10.3969/j.issn.1674-8115.2023.04.010
荧光探针是FLI的核心和基础,通常由荧光基团(fluorophore)、连接体(spacer)和识别基团(receptor)组成[5](图1);其中,荧光基团决定了探针的灵敏度,识别基团决定了探针的选择性和特异性。依据发射波长,荧光基团被分为2类,即可见光波段(400~760 nm)荧光团和近红外波段(760~1 700 nm)荧光团。早期的探针主要使用可见光波段荧光团,成像深度仅为1~2 mm,且信噪比(signal to interference plus noise ratio,SINR)极低,用于恶性肿瘤FLI的灵敏度较差。随着近红外荧光成像技术的发展,研究者们开发了一系列近红外荧光团,有效地提高了恶性肿瘤FLI的灵敏度;同时,通过设计和修饰识别基团,赋予探针靶向恶性肿瘤的能力,显著地提高了恶性肿瘤FLI的选择性和特异性。本文主要就近红外荧光团、荧光探针靶向恶性肿瘤的策略及其应用进行介绍。
NIR-Ⅰ是首先发现的近红外成像波段。比之于可见光,NIR-Ⅰ荧光被生物组织吸收和散射的水平均较低,组织自发荧光也较弱。NIR-Ⅰ荧光团主要有花菁类、酞菁类、卟啉衍生物和BODIPY(boron dipyrromethane)类似物等。当前,基于NIR-Ⅰ荧光团构建的荧光探针已在恶性肿瘤FLI领域取得了较广泛的应用[8]。研究[9]显示,吲哚菁绿(indocyanine green fluorescence,ICG)是一种典型的花菁类近红外荧光团,也是目前唯一被批准用于临床的近红外荧光团。HE等[10]对结直肠癌肝转移患者开展的肝脏切除术发现,与传统肝切除术相比,ICG荧光图像引导切除术能够显著提升术者发现的肝内结直肠癌转移灶的数量,缩短患者的术后住院时间,大幅降低其1年内的复发率。
为了赋予“常亮”型荧光探针靶向恶性肿瘤的能力,学者们做了大量的探索并最终总结出如下3种策略:①被动靶向策略。基于实体瘤的“高渗透长滞留效应”(enhanced permeability and retention effect,EPR)[14],通过改变荧光探针的大小,使探针能被动停留在肿瘤部位。②主动靶向策略。基于抗原-抗体、受体-配体之间的相互作用,将肿瘤特异性抗体与荧光团偶联构建荧光探针,使探针主动靶向至肿瘤部位。③细胞膜仿生靶向策略。基于细胞膜的生物学特性,利用机体内源性细胞膜对荧光探针表面进行包覆修饰,赋予其肿瘤靶向性[15]。
The manuscript was drafted and written by WANG Wenbo, ZHANG Fangrong and SHI Tingwang. The manuscript was revised and finalized by CHEN Yunfeng. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
EGLOFF-JURAS C, BEZDETNAYA L, DOLIVET G, et al. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green[J]. Int J Nanomedicine, 2019, 14: 7823-7838.
SCHOUW H M, HUISMAN L A, JANSSEN Y F, et al. Targeted optical fluorescence imaging: a meta-narrative review and future perspectives[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4272-4292.
TANG Y F, PEI F, LU X M, et al. Recent advances on activatable NIR-Ⅱ fluorescence probes for biomedical imaging[J]. Adv Optical Mater, 2019, 7(21): 1900917.
LI C, GUAN X, ZHANG X, et al. NIR-Ⅱ bioimaging of small molecule fluorophores: from basic research to clinical applications[J]. Biosens Bioelectron, 2022, 216: 114620.
CHEN Q Y, XIE J W, ZHONG Q, et al. Safety and efficacy of indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial[J]. JAMA Surg, 2020, 155(4): 300-311.
HE K S, HONG X P, CHI C W, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial[J]. J Am Coll Surg, 2022, 234(2): 130-137.
LI D F, HE S Q, WU Y F, et al. Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window[J]. Adv Sci (Weinh), 2019, 6(23): 1902042.
ZHOU H, LI S S, ZENG X D, et al. Tumor-homing peptide-based NIR-Ⅱ probes for targeted spontaneous breast tumor imaging[J]. Chin Chem Lett, 2020, 31(6): 1382-1386.
KALYANE D, RAVAL N, MAHESHWARI R, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1252-1276.
JOSHI B P, HARDIE J, FARKAS M E. Harnessing biology to deliver therapeutic and imaging entities via cell-based methods[J]. Chemistry, 2018, 24(35): 8717-8726.
ON K C, RHO J, YOON H Y, et al. Tumor-targeting glycol chitosan nanoparticles for image-guided surgery of rabbit orthotopic VX2 lung cancer[J]. Pharmaceutics, 2020, 12(7): 621.
XU Y L, WU H, HUANG J, et al. Probing and enhancing ligand-mediated active targeting of tumors using sub-5 nm ultrafine iron oxide nanoparticles[J]. Theranostics, 2020, 10(6): 2479-2494.
DE JONGH S J, TJALMA J J J, KOLLER M, et al. Back-table fluorescence-guided imaging for circumferential resection margin evaluation using bevacizumab-800CW in patients with locally advanced rectal cancer[J]. J Nucl Med, 2020, 61(5): 655-661.
VOSKUIL F J, DE JONGH S J, HOOGHIEMSTRA W T R, et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: a quantitative dose-escalation study[J]. Theranostics, 2020, 10(9): 3994-4005.
MUSELAERS C H J, STILLEBROER A B, RIJPKEMA M, et al. Optical imaging of renal cell carcinoma with anti-carbonic anhydrase Ⅸ monoclonal antibody girentuximab[J]. J Nucl Med, 2014, 55(6): 1035-1040.
ZETTLITZ K A, TSAI W T K, KNOWLES S M, et al. Dual-modality immuno-PET and near-infrared fluorescence imaging of pancreatic cancer using an anti-prostate stem cell antigen cys-diabody[J]. J Nucl Med, 2018, 59(9): 1398-1405.
BOOGERD L S F, BOONSTRA M C, PREVOO H A J M, et al. Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: preclinical validation[J]. Surg Oncol, 2019, 28: 1-8.
AMINI A, SAFDARI Y, TASH SHAMSABADI F. Near-infrared fluorescence imaging of EGFR-overexpressing tumors in the mouse xenograft model using scFv-IRDye800CW and cetuximab-IRDye800CW[J]. Mol Imaging, 2022, 2022: 9589820.
DE VALK K S, DEKEN M M, HANDGRAAF H J M, et al. First-in-human assessment of cRGD-ZW800-1, a zwitterionic, integrin-targeted, near-infrared fluorescent peptide in colon carcinoma[J]. Clin Cancer Res, 2020, 26(15): 3990-3998.
WANG J, FANG X N, ZHANG C C, et al. Development of aptamer-based molecular tools for rapid intraoperative diagnosis and in vivo imaging of serous ovarian cancer[J]. ACS Appl Mater Interfaces, 2021, 13(14): 16118-16126.
RAO L, HE Z B, MENG Q F, et al. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles[J]. J Biomed Mater Res A, 2017, 105(2): 521-530.
ZHANG Y, ZHANG G P, ZENG Z L, et al. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy[J]. Chem Soc Rev, 2022, 51(2): 566-593.
WITJES M, VOSKUIL F, STEINKAMP P, et al. Fluorescence guided surgery using the pH-activated micellar tracer ONM-100: first-in-human proof of principle in head and neck squamous cell carcinoma[J]. J Oral Maxillofac Surg, 2019, 77(9): e38.
DOU K, HUANG W J, XIANG Y H, et al. Design of activatable NIR-Ⅱ molecular probe for in vivo elucidation of disease-related viscosity variations[J]. Anal Chem, 2020, 92(6): 4177-4181.
UNKART J T, CHEN S L, WAPNIR I L, et al. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study[J]. Ann Surg Oncol, 2017, 24(11): 3167-3173.
SMITH B L, LANAHAN C R, SPECHT M C, et al. Feasibility study of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast cancer in breast conserving surgery[J]. Ann Surg Oncol, 2020, 27(6): 1854-1861.