上海交通大学学报(医学版), 2023, 43(5): 611-618 doi: 10.3969/j.issn.1674-8115.2023.05.012

综述

表皮生长因子受体突变型晚期非小细胞肺癌免疫治疗的研究进展

黄华艳,, 徐张闻笛, 夏立亮, 虞永峰, 陆舜,

上海交通大学医学院附属胸科医院肿瘤科,上海 200030

Advances in immunotherapy of advanced non-small cell lung cancer with EGFR mutation

HUANG Huayan,, XU-ZHANG Wendi, XIA Liliang, YU Yongfeng, LU Shun,

Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China

通讯作者: 陆 舜,电子信箱:shunlu@sjtu.edu.cn

编委: 瞿麟平

收稿日期: 2022-09-30   接受日期: 2023-03-14  

基金资助: 国家自然科学基金.  82030045
北京市希思科临床肿瘤学研究基金会.  Y-HR2020MS-0982

Corresponding authors: LU Shun, E-mail:shunlu@sjtu.edu.cn.

Received: 2022-09-30   Accepted: 2023-03-14  

作者简介 About authors

黄华艳(1997—),女,壮族,博士生;电子信箱:hhysjtuyxy@163.com。 E-mail:hhysjtuyxy@163.com

摘要

亚洲人群非小细胞肺癌(non-small cell lung cancer,NSCLC)表皮生长因子受体(epidermal growth factor receptor,EGFR)突变发生率显著高于西方人群。近年来,以针对程序性死亡因子1(programmed cell death 1,PD-1)及程序性死亡因子配体1(programmed cell death ligand 1,PD-L1)抗体药物为代表的免疫治疗已成为晚期NSCLC临床治疗方案之一,开启肺癌免疫治疗新时代;然而既往研究报道EGFR突变型晚期NSCLC患者未能从免疫治疗单药中获益,不同EGFR突变型的患者对免疫治疗的响应也存在差异。最新临床研究ORIENT-31中期分析结果显示,免疫治疗联合化疗和抗血管生成药物显著改善了EGFR酪氨酸激酶抑制剂耐药的晚期NSCLC患者的无进展生存期,为此类EGFR突变型患者提供了新的临床治疗策略。EGFR突变型肿瘤组织微环境呈免疫抑制的状态,通过靶向肿瘤免疫抑制中发挥重要作用的靶点,促进EGFR突变型肿瘤对免疫治疗的响应,获得增效的新免疫联合治疗策略,可以丰富EGFR突变型晚期NSCLC患者在靶向治疗耐药后的临床治疗选择,进一步改善此类患者的生存预后。该文就EGFR突变型晚期NSCLC免疫治疗的最新临床研究进展、不同EGFR突变型免疫治疗效果差异、EGFR突变型NSCLC免疫联合治疗的增敏机制和潜在联合治疗方案进行综述。

关键词: 非小细胞肺癌 ; 表皮生长因子受体 ; 免疫检查点抑制剂 ; 突变型

Abstract

The incidence of epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer (NSCLC) in Asians is significantly higher than that in Westerners. For the past few years, immune checkpoint inhibitors (ICIs) that target the programmed cell death 1 (PD-1) /programmed cell death ligand 1 (PD-L1) axis have become a part of the treatment paradigm for advanced NSCLC, opening a new era of immunotherapy for lung cancer. However, previous clinical trials reported that advanced NSCLC patients with EGFR mutation could not benefit from ICIs monotherapy. The immunotherapy outcomes of different EGFR mutant subtypes showed diverse. The interim results of the latest clinical trial ORIENT-31 showed that immunotherapy combined with chemotherapy and anti-angiogenesis significantly improved the progression-free survival of EGFR tyrosine kinase inhibitors (TKIs) resistant advanced NSCLC patients, providing a new therapeutic strategy for those EGFR mutant patients. The tumor microenvironment of EGFR-mutated NSCLC is immunosuppressed. Targeting the key immunomodulatory factors that play important roles in the immunosuppression may promote the response of EGFR-mutated tumors to immunotherapy and provide a new synergistic immune combination therapy strategy, which will enrich the clinical treatment options and improve the survival prognosis of EGFR-TKIs-resistant NSCLC patients. This article summarizes the latest clinical progression of immunotherapy in advanced NSCLC with EGFR mutation, the differences of immunotherapy efficacy among different EGFR mutation subtypes, the synergistic mechanism of combined immunotherapy and the potential molecular target combining with immunotherapy in EGFR-mutated NSCLC.

Keywords: non-small cell lung cancer (NSCLC) ; epidermal growth factor receptor (EGFR) ; immune checkpoint inhibitor (ICI) ; mutation subtype

PDF (1263KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄华艳, 徐张闻笛, 夏立亮, 虞永峰, 陆舜. 表皮生长因子受体突变型晚期非小细胞肺癌免疫治疗的研究进展. 上海交通大学学报(医学版)[J], 2023, 43(5): 611-618 doi:10.3969/j.issn.1674-8115.2023.05.012

HUANG Huayan, XU-ZHANG Wendi, XIA Liliang, YU Yongfeng, LU Shun. Advances in immunotherapy of advanced non-small cell lung cancer with EGFR mutation. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(5): 611-618 doi:10.3969/j.issn.1674-8115.2023.05.012

肺癌是中国乃至全球发病率和死亡率最高的恶性肿瘤之一1-2。原发性肺癌中非小细胞肺癌(non-small cell lung cancer,NSCLC)约占85%,其中比例最高的病理类型是肺腺癌(lung adenocarcinoma,LUAD)3。表皮生长因子受体(epidermal growth factor receptor,EGFR)突变是亚洲肺腺癌患者最常见的肿瘤驱动基因突变,约占50%4,显著高于西方人群。EGFR是一种跨膜蛋白,是受体酪氨酸激酶ERBB家族的一员,其激酶结构域突变导致持续性激活从而促进NSCLC肿瘤细胞的存活5,而抑制其活性则可以显著抑制肿瘤生长。EGFR酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)显著改善了EGFR突变型晚期LUAD患者的中位无进展生存期(progression-free survival,PFS)和中位总生存期(overall survival,OS)6,成为EGFR敏感突变患者的首选临床治疗方案7。然而,EGFR-TKI治疗依然面临耐药的挑战8。除部分在耐药后出现T790M突变的患者可接受第3代EGFR-TKI靶向治疗外,大部分EGFR-TKI耐药患者的标准治疗仍为化学治疗(化疗),并且往往疗效有限,因此急需新的治疗方案来提高这部分患者临床治疗效果。

以针对程序性死亡蛋白1(programmed cell death 1,PD-1)及程序性死亡受体配体1(programmed cell death ligand 1,PD-L1)抗体药物为代表的免疫检查点抑制剂(immune checkpoint inhibitor,ICI)显著改善了晚期NSCLC患者的生存9,开启了肺癌临床免疫治疗新时代。尽管临床前研究10表明,PD-1抗体通过增强效应T细胞功能和降低促癌细胞因子的水平改善了EGFR突变型肺腺癌患者的生存,但临床研究11表明,EGFR突变型NSCLC患者从免疫单药治疗获益有限。随着研究12的深入,发现不同EGFR突变类型对免疫治疗响应不同;并且EGFR-TKI耐药后患者可以从免疫治疗联合抗血管药物和化疗药物的治疗中获益13-14,这为EGFR突变患者在TKI治疗失败后提供了免疫治疗新方案。

EGFR突变肿瘤对免疫治疗响应差,呈显著典型免疫治疗“冷”肿瘤特征15,因此探究如何将“冷”肿瘤转变成“热”肿瘤,以获得免疫联合治疗的新方案,将更好地满足EGFR突变患者的临床需求。因此,本文总结了EGFR突变型晚期NSCLC免疫治疗最新临床研究进展,讨论不同EGFR突变亚型免疫治疗效果差异,并探讨免疫联合治疗增敏的机制和联合用药新策略。

1 EGFR突变型NSCLC的免疫治疗效果

1.1 免疫单药治疗

对于未经EGFR-TKI治疗,一线治疗接受ICI单药治疗的EGFR突变型晚期NSCLC患者,不同前瞻性临床研究报道的客观反应率(objective response rate,ORR)差异较大。最早的KEYNOTE001临床试验16-17报道的帕博利珠单抗单药治疗4例未经EGFR-TKI治疗的患者ORR为50%,中位PFS为157.5 d,中位OS为559 d;26例经EGFR-TKI治疗后再接受帕博丽珠单抗治疗的患者ORR为4%,中位PFS为56 d,中位OS为120 d。而此后以这个临床试验结果为基础展开的一项前瞻性Ⅱ期临床研究16(NCT 02879994),入组11位EGFR突变型且未经EGFR-TKI治疗的PD-L1阳性的NSCLC患者,其中只有1人达到客观缓解,但是后续对标本进行再核查发现这位患者实际上并没有EGFR突变。CheckMate012临床试验18报道的一线纳武利尤单抗治疗7例EGFR突变型NSCLC患者的ORR为14%,中位PFS和中位OS分别为1.8个月和18.8个月。BIRCH临床试验19报道的一线阿替利珠单抗治疗13例EGFR突变型NSCLC患者的ORR为23%,中位PFS和中位OS分别为5.5个月和20.1个月。总体而言,一线ICI单药治疗EGFR突变型晚期NSCLC的ORR较驱动基因阴性患者显著降低,中位PFS和OS也短于既往报道的一线EGFR-TKI治疗。

对于二线及多线ICI单药治疗EGFR突变型晚期NSCLC患者,前瞻性临床试验1719-22报道的ORR为3%~12%,而EGFR野生型患者的ORR为20%~45%。多中心回顾性研究23分析了接受ICI单药治疗的125例EGFR突变型晚期NSCLC患者,ORR为12%,中位PFS为2.1个月。在日本开展的一项多中心随机对照Ⅱ期临床试验24(WJOG8515L),纳入了102例EGFR-TKI治疗后进展的晚期NSCLC患者,与化疗相比,纳武利尤单抗单药不能延长PFS和OS,纳武利尤单抗单药组中位PFS和中位OS分别为1.7个月和20.7个月,化疗组分别为5.6个月和19.9个月。基于CheckMate057、KEYNOTE010和POPLER 3项大型随机对照Ⅲ期临床试验的meta分析11表明,在EGFR野生型患者中二线ICI单药与多西他赛相比显著改善OS,但在EGFR突变患者中ICI单药未能显著改善患者生存。

对于无法切除的ⅢB期EGFR突变型NSCLC患者,一项多中心回顾性研究25分析发现,根治性放疗后进行度伐利尤单抗单药巩固治疗相比仅进行根治性放疗,未能显著改善患者PFS,且易发生免疫相关不良事件(immune-related adverse event,irAE)。

1.2 双免疫联合治疗

抗PD-1/PD-L1抗体联合抗细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)抗体在EGFR和间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)等驱动基因阴性的晚期NSCLC患者治疗中取得成功26。因此研究者在EGFR突变型晚期NSCLC患者中探索双免疫联合治疗的效果。CheckMate012临床试验27报道,8例初治EGFR突变型晚期NSCLC患者接受纳武利尤单抗联合伊匹木单抗的ORR达到50%;但是KEYNOTE021试验队列D和队列H的研究结果28显示,10例经治EGFR突变型晚期NSCLC患者接受帕博利珠单抗联合伊匹木单抗的ORR仅为10%。目前,针对EGFR-TKI治疗失败的转移性NSCLC患者,采用度伐利尤单抗联合曲美木单抗的Ⅱ期临床试验正在进行中(NCT 03994393)。

1.3 免疫治疗联合EGFR-TKI

在临床前模型中,EGFR基因突变激活可诱导PD-L1表达升高10,给予PD-1抗体同时阻断EGFR信号通路的激活可以增强EGFR突变型肺腺癌对PD-1抗体的敏感性29,提示PD-1抗体联合EGFR-TKI治疗可能是一种免疫治疗增敏的策略。但前瞻性临床研究30结果显示:帕博利珠单抗联合吉非替尼一线治疗EGFR突变型晚期NSCLC患者,3~4级肝脏毒性反应增加,超过一半的患者因不良反应停药出组;尽管帕博利珠单抗联合厄洛替尼不良反应无显著增加,但与厄洛替尼单药相比,联合用药不能提高ORR。与帕博利珠单抗结果相似,度伐利尤单抗联合吉非替尼一线治疗EGFR突变型晚期NSCLC患者,不良反应显著增加,35%的患者因为肝转氨酶升高停药,最终ORR为63%,中位PFS为10.1个月31

纳武利尤单抗联合厄洛替尼治疗EGFR-TKI耐药的EGFR突变型晚期NSCLC患者,3级不良反应的发生率为24%,ORR为15%,中位PFS和中位OS分别为5.1个月和18.7个月32。TATTON临床试验纳入了23名一线治疗接受EGFR-TKI治疗后出现疾病进展的EGFR突变型晚期NSCLC患者,给予奥希替尼联合度伐利尤单抗治疗,ORR为43%,但联合用药使间质性肺炎发生率(22%)升高33。另一项针对EGFR-TKI治疗失败的EGFR T790M突变阳性的晚期NSCLC患者的Ⅲ期临床试验CAURAL34,同样是对比奥希替尼单药和奥希替尼联合度伐利尤单抗治疗的效果;由于上述原因提前终止招募患者,最终29名患者被随机分配,15名接受奥希替尼治疗,14名接受奥希替尼联合度伐利尤单抗治疗,奥希替尼组和联合组的ORR分别为80%和64%,联合组报告了1例间质性肺炎不良反应的患者。免疫治疗联合奥希替尼方案与严重irAE的发生特异性相关,与其他EGFR-TKI联用并未发现严重irAE35

1.4 免疫治疗联合化疗

CheckMate012临床试验36报道,6例一线接受纳武利尤单抗联合化疗的EGFR突变晚期NSCLC患者ORR为17%,中位PFS为4.8个月,中位OS为20.5个月,中位PFS和中位OS相比EGFR野生型患者均缩短。有研究37回顾性分析EGFR-TKI治疗后进展的NSCLC患者接受ICI或ICI联合化疗的疗效,ORR分别为9.1%和25.0%,接受ICI联合化疗的患者较接受ICI单药治疗患者表现出更长的PFS和OS的趋势。

IMpower150试验13最终分析结果显示,对于EGFR突变型晚期NSCLC患者,阿替利珠单抗联合化疗与贝伐珠单抗联合化疗相比没有显著生存获益,2种疗法OS分别为21.4个月和20.3个月。然而,在一项回顾性研究38中,对于EGFR-TKI治疗后进展的无继发性T790M突变的EGFR突变型NSCLC患者,倾向性匹配二线治疗接受免疫治疗联合化疗和仅接受化疗的2组患者,结果发现联合治疗组的患者PFS、OS显著延长,ORR更高。在前瞻性、多中心、双盲Ⅲ期临床研究ORIENT-3139中,EGFR-TKI治疗后进展的NSCLC患者接受信迪利单抗联合培美曲塞和铂类化疗,与接受单纯培美曲塞和铂类化疗的患者相比,其PFS显著延长,中位PFS分别为5.5个月和4.3个月,2组患者治疗期间3级及以上的不良事件发生率分别为46.2%和56.9%。肿瘤生活质量调查分析显示,免疫治疗联合化疗较单纯化疗显著延缓了患者发生生活质量恶化的时间14

上述研究表明,一线ICI联合化疗对于EGFR突变型晚期NSCLC患者相比EGFR野生型患者效果更差,但对于EGFR-TKI治疗后进展的患者,ICI联合化疗优于ICI单药或单纯化疗方案。这为EGFR-TKI耐药的患者提供了免疫治疗联合化疗这一新选择。

1.5 免疫治疗联合化疗和抗血管生成

IMpower150研究13回顾性分析显示,26人接受阿替利珠单抗联合贝伐单抗,以及卡铂和紫杉醇,32人接受贝伐珠单抗联合卡铂和紫杉醇,四药联合相比于三药联合显著延长了患者OS,中位OS分别为29.4个月和18.1个月,提示联合免疫治疗和抗血管生成药物对EGFR敏感突变晚期NSCLC患者具有协同增敏作用。另一项开放标签、单臂、单中心的Ⅱ期临床研究40报道,40例EGFR-TKI治疗后进展的晚期NSCLC患者接受阿替利珠单抗联合贝伐单抗,以及培美曲塞和卡铂治疗后,ORR为62.5%,中位PFS为9.4个月,中位OS未达到,1年生存率为72.5%。

ORIENT-31是在我国开展的一项随机、双盲、多中心的Ⅲ期临床试验39,共纳入了476名EGFR-TKI治疗后进展的EGFR突变型晚期NSCLC患者,第2次中期分析显示:信迪利单抗联合抗血管生成药物IBI305以及培美曲塞和卡铂组,相比单纯培美曲塞和卡铂化疗组,PFS显著延长(7.2个月vs 4.3个月),四药联合组和单纯化疗组的ORR分别为59.5%和56.9%,2组3级及以上的不良事件发生率相当,分别为34.8%和29.4%。根据不同临床病理特征做亚组分析,EGFR-TKI治疗后进展的患者,包括脑转移的患者,均有从四药联合中获益的趋势14;肿瘤生活质量调查分析显示,四药联合相较于单纯化疗显著延缓了患者生活质量恶化的时间14。ORIENT-31是全球首个对EGFR突变型晚期NSCLC患者免疫治疗的大样本随机对照Ⅲ期临床研究,揭示了信迪利单抗联合抗血管生成和化疗的治疗方案有效且耐受性良好1439,为EGFR-TKI治疗后进展的患者提供了免疫联合治疗新方案。

2 不同EGFR突变类型NSCLC对免疫治疗响应差异

根据突变位点的差异,EGFR突变可以分为不同的类型,最常见突变是19号外显子缺失(19del)和21号外显子错义突变(L858R),分别占45%左右和40%~45%,其余包括T790M、20号外显子插入(20ins)及罕见敏感突变(G719X、L861Q、S768I)等58。不同的突变会对EGFR蛋白结构产生影响,导致不同EGFR突变类型的患者对不同的EGFR-TKI药物响应不同41,并且研究分析发现不同EGFR突变类型的患者对免疫治疗的响应也存在差异。

2.1 EGFR 常见敏感突变型

EGFR野生型患者相比,EGFR常见敏感突变(19del、L858R)型NSCLC患者接受免疫治疗的效果较差。一项多中心回顾性研究12结果显示:接受免疫单药治疗或双免疫联合治疗的80例EGFR 19del突变型晚期NSCLC患者与212例EGFR野生型患者相比,ORR较低(7% vs 22%),PFS和OS也显著缩短;而46例EGFR L858R突变型患者与EGFR野生型患者相比,PFS显著缩短,ORR(16% vs 22%)以及OS差异无统计学意义12

与L858R突变型患者相比,19del突变型患者免疫治疗效果更差。2项回顾性研究42-43纳入了EGFR-TKI治疗失败接受免疫治疗的晚期NSCLC患者,多因素分析结果表明,与19del突变型相比,L858R突变型是免疫治疗后PFS的积极预测因素。但也有研究44报道L858R突变型和19del突变型患者免疫治疗后PFS、OS和ORR差异无统计学意义。

2.2 EGFRT790M突变型

约有60%的EGFR常见敏感突变型患者经EGFR-TKI治疗后会出现EGFR T790M突变,进而产生EGFR-TKI耐药45。第3代EGFR-TKI药物是出现T790M突变患者的首选治疗方案,但同样会面临耐药挑战;第3代EGFR-TKI耐药后的标准治疗仍为化疗7,因此为这类患者寻找更优的治疗策略具有重要意义。

EGFR-TKI治疗进展后继发性T790M的出现是否会影响免疫治疗效果仍有争议。我国一项回顾性研究44报道T790M突变阴性患者免疫治疗的ORR显著高于T790M突变阳性患者,分别为21.9%和3.0%。另外2项研究46-47报道EGFR-TKI耐药后接受ICI治疗的晚期NSCLC患者,无T790M突变的患者的中位PFS显著长于T790M突变的患者。但也有回顾性研究报道,在EGFR-TKI治疗失败的晚期NSCLC患者中,EGFR T790M突变阳性和阴性的患者之间免疫治疗的ORR12、PFS124448及OS1244差异无统计学意义。

2.3 EGFR20ins突变型

EGFR 20ins突变型晚期NSCLC患者目前一线标准治疗仍是以铂类为基础的化疗。对于化疗失败患者,美国食品药品监督管理局已经批准了埃万妥单抗和莫博替尼作为其二线治疗方案7,但目前国内仍在开展临床试验中。免疫治疗在EGFR 20ins突变型患者中的应用也在评估中。

EGFR 20ins突变型患者从一线免疫治疗中获益有限。美国一项研究49报道:129例EGFR 20ins突变型患者一线治疗的总ORR为18.6%,中位PFS和OS分别为5.2个月和17.0个月,其中免疫治疗单药组和免疫治疗联合化疗组ORR分别为9.1%和18.8%,中位PFS分别为3.1个月和4.5个月,中位OS分别为11.0个月和11.3个月,2种治疗对于这类患者效果均较差。另一项回顾性研究50报道,EGFR 20ins突变型晚期NSCLC患者经过一线治疗后,单纯化疗组和免疫治疗联合化疗组PFS无显著差异,免疫治疗联合化疗相比抗血管生成药物联合化疗,ORR相近(38.1% vs 40.0%),疾病控制率(disease control rate,DCR)更低(80.0% vs 96.8%),PFS无显著差异(6.5个月 vs 7.7个月)。对于此类EGFR突变亚型,仍需要更多研究探讨新的免疫联合治疗方案及效果。

2.4 EGFR 罕见敏感突变型

EGFR常见突变型患者相比,免疫治疗对于EGFR G719X罕见突变型患者具有较好的效果。一项多中心回顾性研究12结果显示,7例G719X突变型患者中位PFS和中位OS分别为4.8个月和29.0个月,而5例L861Q患者中位PFS和OS分别为1.3个月和5.2个月。另外2项研究4446报道,包括G719X在内的罕见EGFR突变型患者免疫治疗的ORR高于EGFR常见敏感突变型患者,中位PFS也显著延长,但OS差异无统计学意义44

综上所述,不同EGFR突变型NSCLC患者对于免疫治疗的响应呈现出差异性,但由于研究患者人数的限制,尤其是EGFR罕见突变型,上述结论仍然需要多中心大样本的临床试验验证。这将有助于促进精准化免疫治疗,优化EGFR突变型NSCLC患者中免疫治疗的适合人群。

3 EGFR突变型NSCLC免疫联合治疗的增敏机制和潜在免疫联合治疗方案

EGFR突变型NSCLC一般对免疫治疗响应较差,因此通过EGFR-TKI治疗或其他治疗手段重塑肿瘤组织微环境,实现此类肿瘤的“冷-热”转换,促进其对免疫治疗的响应,将为此类患者提供临床免疫联合治疗新方案。

3.1 抗血管生成

EGFR激活突变或过表达可导致EGFR信号通路的激活,诱导血管内皮生长因子(vascular endothelial growth factor,VEGF)表达上调51,从而驱动肿瘤生长。在EGFR突变的NSCLC组织中VEGF表达显著高于野生型对照51。VEGF可以通过抑制树突状细胞(dendritic cell,DC)成熟降低T细胞活化、减少T细胞肿瘤浸润和促进肿瘤免疫抑制的发生52。抗VEGF药物使肿瘤组织的脉管系统正常化,增加了免疫细胞向肿瘤组织的浸润,其具体机制包括内皮细胞的激活53,肿瘤内Ⅰ类主要组织相容性复合体(major histocompatibility complex class Ⅰ,MHC-Ⅰ)、辅助性T细胞1(helper T cell 1,Th1细胞)和效应T细胞标志物表达的增加以及趋化因子表达的增加,促进了CD8+ T细胞浸润增多54。抗血管生成药物还可以将肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)从免疫抑制性M2样表型极化为免疫刺激性M1样表型,促进CD4+ T细胞和CD8+ T细胞的肿瘤浸润55。肿瘤微环境中产生的VEGF可增强PD-1和其他免疫抑制性检查点的表达,促进CD8+ T细胞衰竭;靶向VEGF的抗血管生成药物可以逆转CD8+ T细胞的耗竭56。临床试验IMpower15016和ORIENT-3117也证明了免疫治疗联合抗血管生成药物及化疗,可以有效提高EGFR突变型患者免疫治疗的效果。

3.2 抑制CD73-腺苷信号通路

CD73又称为胞外5′-核苷酸酶,是一种细胞表面酶;肿瘤细胞和调节性T细胞(regulatory T cell,Treg细胞)表达CD73,后者通过催化单磷酸腺苷转化为腺苷来抑制抗肿瘤免疫57-58。细胞外腺苷可损伤免疫细胞的功能,如T细胞、自然杀伤细胞(natural killer cell,NK细胞)、巨噬细胞和DC等;它还可促进Treg细胞和髓系来源抑制细胞(myeloid cell-derived suppressor cell,MDSC)的生成,从而促进肿瘤中免疫抑制微环境的形成59。临床前研究60表明,CD73-腺苷信号通路在EGFR突变型NSCLC中显著上调,且与免疫抑制性肿瘤微环境密切相关;在动物模型中,PD-L1抗体联合CD73抗体可以增强细胞毒性T细胞的活性,从而抑制肿瘤生长61。因此,阻断免疫检查点联合抑制CD73-腺苷信号通路可能是逆转EGFR突变型NSCLC中的免疫逃逸和免疫治疗抗性的潜在策略。目前CD73抗体联合PD-1/PD-L1抗体和CD73-PD-(L)1双抗的临床前及临床试验(NCT04262388、NCT03454451、NCT05431270、NCT05001347)正在进行中。

3.3 抑制免疫球蛋白样转录物4

免疫球蛋白样转录物4(immunoglobulin-like transcript 4,ILT4)是在髓样细胞中发现的一种重要免疫抑制分子62,可以抑制不同T细胞亚群的分化和抗肿瘤能力,增强肿瘤微环境中的免疫抑制并促进肿瘤免疫逃逸63。EGFR信号通路激活可以通过上调肿瘤中ILT4的表达,诱导TAM募集和M2样极化,从而损害T细胞功能;ILT4还可直接抑制T细胞增殖、细胞毒性,以及γ干扰素(interferon-γ,IFN-γ)的表达和分泌。在动物模型中抑制ILT4可以增强抗肿瘤免疫并抑制肿瘤进展64。ILT4高表达是EGFR介导的肿瘤免疫逃逸的机制之一,抑制ILT4可能成为EGFR突变型NSCLC患者免疫治疗的潜在联合策略。

3.4 抑制转录生长因子

转录生长因子-β(transforming growth factor-β,TGF-β)是一种免疫抑制分子65。TCGA数据分析显示,EGFR突变型的早期NSCLC患者的手术肿瘤标本中TGF-β的表达显著高于EGFR野生型患者60。目前国内外均有采用TGF-β抗体或抑制剂联合PD-1/PD-L1抗体,或者两者双抗的临床研究正在开展中(NCT04560244、NCT03732274、NCT04297748)。因此,需要更多研究来探索TGF-β在EGFR突变型NSCLC形成中的免疫抑制作用,以及靶向TGF-β增强免疫治疗敏感性的有效性和安全性,从而为开展免疫联合治疗临床试验提供依据。

4 总结和展望

免疫治疗对EGFR突变型NSCLC患者的效果差,EGFR-TKI治疗仍然是此类患者首选的治疗方案,但患者依然面临耐药的挑战,并且耐药后的治疗手段及其效果有限,因此需要寻找更有效的治疗方案。ORIENT-31临床实验的中期结果证明了EGFR-TKI治疗后进展的患者可以从免疫治疗联合化疗和抗血管生成药物中获益,为EGFR突变型晚期NSCLC患者在EGFR-TKI耐药后提供了新的免疫联合治疗方案,因而具有重要意义。此外,在免疫治疗时代,如何通过靶向特定靶点,促进EGFR突变型肿瘤的“冷-热”转换,获得增效的免疫联合治疗策略,将进一步丰富EGFR突变型晚期NSCLC患者的临床治疗选择,改善此类患者的生存预后。

作者贡献声明

黄华艳参与论文的选题和设计,完成文献查阅和分析,并撰写论文初稿。徐张闻笛、夏立亮和虞永峰参与文献审核,并修改论文。陆舜提出文章的选题和设计,指导论文写作并提出修改意见。所有作者都阅读并同意最终稿件的提交。

AUTHOR's CONTRIBUTIONS

HUANG Huayan participated in the topic selection and the design of the article, made contributions to the collection and analysis of relevant literature and wrote the first draft. XU-ZHANG Wendi, XIA Liliang and YU Yongfeng participated in the literature review and revision of the article. LU Shun proposed the topic selection and the design of the article, guided the writing of the paper and proposed suggestions for revision. All the authors have read the last version of paper and consented for submission.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.

[本文引用: 1]

ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9.

[本文引用: 1]

MOLINA J R, YANG P, CASSIVI S D, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship[J]. Mayo Clin Proc, 2008, 83(5): 584-594.

[本文引用: 1]

SHI Y K, AU J S K, THONGPRASERT S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER)[J]. J Thorac Oncol, 2014, 9(2): 154-162.

[本文引用: 1]

SHARMA S V, BELL D W, SETTLEMAN J, et al. Epidermal growth factor receptor mutations in lung cancer[J]. Nat Rev Cancer, 2007, 7(3): 169-181.

[本文引用: 2]

SORIA J C, OHE Y, VANSTEENKISTE J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2): 113-125.

[本文引用: 1]

ETTINGER D S, WOOD D E, AISNER D L, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530.

[本文引用: 3]

OHASHI K, MARUVKA Y E, MICHOR F, et al. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease[J]. J Clin Oncol, 2013, 31(8): 1070-1080.

[本文引用: 2]

GARON E B, HELLMANN M D, RIZVI N A, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase Ⅰ KEYNOTE-001 study[J]. J Clin Oncol, 2019, 37(28): 2518-2527.

[本文引用: 1]

AKBAY E A, KOYAMA S, CARRETERO J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors[J]. Cancer Discov, 2013, 3(12): 1355-1363.

[本文引用: 2]

LEE C K, MAN J, LORD S, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer: a meta-analysis[J]. J Thorac Oncol, 2017, 12(2): 403-407.

[本文引用: 2]

HASTINGS K, YU H A, WEI W, et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(8): 1311-1320.

[本文引用: 7]

NOGAMI N, BARLESI F, SOCINSKI M A, et al. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain[J]. J Thorac Oncol, 2022, 17(2): 309-323.

[本文引用: 3]

LU S, WU L, JIAN H, et al. Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial[J]. Lancet Oncol, 2022, 23(9): 1167-1179.

[本文引用: 5]

QIAO M, JIANG T, LIU X, et al. Immune checkpoint inhibitors in EGFR-mutated NSCLC: dusk or dawn?[J]. J Thorac Oncol, 2021, 16(8): 1267-1288.

[本文引用: 1]

LISBERG A, CUMMINGS A, GOLDMAN J W, et al. A phase Ⅱ study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC[J]. J Thorac Oncol, 2018, 13(8): 1138-1145.

[本文引用: 3]

GARON E B, Wolf B, LISBERG A, et al. Prior TKI therapy in NSCLC EGFR mutant patients associates with lack of response to anti-PD-1 treatment[J]. J Thorac Oncol, 2015, 10(9 Suppl 2): S269.

[本文引用: 3]

GETTINGER S, RIZVI N A, CHOW L Q, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer[J]. J Clin Oncol, 2016, 34(25): 2980-2987.

[本文引用: 1]

PETERS S, GETTINGER S, JOHNSON M L, et al. Phase Ⅱ trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH)[J]. J Clin Oncol, 2017, 35(24): 2781-2789.

[本文引用: 2]

RITTMEYER A, BARLESI F, WATERKAMP D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066): 255-265.

BORGHAEI H, PAZ-ARES L, HORN L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(17): 1627-1639.

GARASSINO M C, CHO B C, KIM J H, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2018, 19(4): 521-536.

[本文引用: 1]

MAZIERES J, DRILON A, LUSQUE A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry[J]. Ann Oncol, 2019, 30(8): 1321-1328.

[本文引用: 1]

HAYASHI H, SUGAWARA S, FUKUDA Y, et al. A randomized phase Ⅱ study comparing nivolumab with carboplatin-pemetrexed for EGFR-mutated NSCLC with resistance to EGFR tyrosine kinase inhibitors (WJOG8515L)[J]. Clin Cancer Res, 2022, 28(5): 893-902.

[本文引用: 1]

AREDO J V, MAMBETSARIEV I, HELLYER J A, et al. Durvalumab for stage Ⅲ EGFR-mutated NSCLC after definitive chemoradiotherapy[J]. J Thorac Oncol, 2021, 16(6): 1030-1041.

[本文引用: 1]

HELLMANN M D, PAZ-ARES L, CARO R B, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer[J]. N Engl J Med, 2019, 381(21): 2020-2031.

[本文引用: 1]

HELLMANN M D, RIZVI N A, GOLDMAN J W, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study[J]. Lancet Oncol, 2017, 18(1): 31-41.

[本文引用: 1]

GUBENS M A, SEQUIST L V, STEVENSON J P, et al. Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non-small-cell lung cancer: KEYNOTE-021 cohorts D and H[J]. Lung Cancer, 2019, 130: 59-66.

[本文引用: 1]

SUGIYAMA E, TOGASHI Y, TAKEUCHI Y, et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer[J]. Sci Immunol, 2020, 5(43): eaav3937.

[本文引用: 1]

YANG J C, GADGEEL S M, SEQUIST L V, et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation[J]. J Thorac Oncol, 2019, 14(3): 553-559.

[本文引用: 1]

CREELAN B C, YEH T C, KIM S W, et al. A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer[J]. Br J Cancer, 2021, 124(2): 383-390.

[本文引用: 1]

GETTINGER S, HELLMANN M D, CHOW L Q M, et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC[J]. J Thorac Oncol, 2018, 13(9): 1363-1372.

[本文引用: 1]

OXNARD G R, YU H, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer[J]. Ann Oncol, 2020, 31(4): 507-516.

[本文引用: 1]

YANG J C H, SHEPHERD F A, KIM D W, et al. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL brief report[J]. J Thorac Oncol, 2019, 14(5): 933-939.

[本文引用: 1]

SCHOENFELD A J, ARBOUR K C, RIZVI H, et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib[J]. Ann Oncol, 2019, 30(5): 839-844.

[本文引用: 1]

RIZVI N A, HELLMANN M D, BRAHMER J R, et al. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer[J]. J Clin Oncol, 2016, 34(25): 2969-2979.

[本文引用: 1]

SHEN C A, CHAO H S, SHIAO T H, et al. Comparison of the outcome between immunotherapy alone or in combination with chemotherapy in EGFR-mutant non-small cell lung cancer[J]. Sci Rep, 2021, 11: 16122.

[本文引用: 1]

LIU S T, WU F Y, LI X F, et al. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/PD-L1 based immunotherapy in EGFR common mutation NSCLC[J]. Front Oncol, 2021, 11: 639947.

[本文引用: 1]

LU S, WU L, JIAN H, et al. Sintilimab with or without IBI305 plus chemotherapy in patients with EGFR mutated non-squamous non-small cell lung cancer (EGFRm nsqNSCLC) who progressed on EGFR tyrosine-kinase inhibitors (TKIs) therapy: second interim analysis of phase Ⅲ ORIENT-31 study[J]. Ann Oncol, 2022, 33: S1424.

[本文引用: 3]

LAM T C, TSANG K C, CHOI H C, et al. Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure[J]. Lung Cancer, 2021, 159: 18-26.

[本文引用: 1]

ROBICHAUX J P, LE X N, VIJAYAN R S K, et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC[J]. Nature, 2021, 597(7878): 732-737.

[本文引用: 1]

CHEN Y, YANG Z Y, WANG Y N, et al. Pembrolizumab plus chemotherapy or anlotinib vs. pembrolizumab alone in patients with previously treated EGFR-mutant NSCLC[J]. Front Oncol, 2021, 11: 671228.

[本文引用: 1]

TIAN T, YU M, LI J, et al. Front-line ICI-based combination therapy post-TKI resistance may improve survival in NSCLC patients with EGFR mutation[J]. Front Oncol, 2021, 11: 739090.

[本文引用: 1]

CHEN Q, SHANG X L, LIU N, et al. Features of patients with advanced EGFR-mutated non-small cell lung cancer benefiting from immune checkpoint inhibitors[J]. Front Immunol, 2022, 13: 931718.

[本文引用: 6]

YU H A, ARCILA M E, REKHTMAN N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clin Cancer Res, 2013, 19(8): 2240-2247.

[本文引用: 1]

YAMADA T, HIRAI S, KATAYAMA Y, et al. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer[J]. Cancer Med, 2019, 8(4): 1521-1529.

[本文引用: 2]

YU X, LI J Q, YE L Y, et al. Real-world outcomes of chemo-antiangiogenesis versus chemo-immunotherapy combinations in EGFR-mutant advanced non-small cell lung cancer patients after failure of EGFR-TKI therapy[J]. Transl Lung Cancer Res, 2021, 10(9): 3782-3792.

[本文引用: 1]

HARATANI K, HAYASHI H, TANAKA T, et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment[J]. Ann Oncol, 2017, 28(7): 1532-1539.

[本文引用: 1]

OU S H I, LIN H M, HONG J L, et al. Real-world response and outcomes in NSCLC patients with EGFR exon 20 insertion mutations[J]. J Clin Oncol, 2021, 39(15_suppl): 9098.

[本文引用: 1]

YANG G J, YANG Y N, LIU R Z, et al. First-line immunotherapy or angiogenesis inhibitor combined with chemotherapy for advanced non-small cell lung cancer with EGFR exon 20 insertions: real-world evidence from China[J]. Cancer Med, 2023, 12(1): 335-344.

[本文引用: 1]

HUNG M S, CHEN I C, LIN P Y, et al. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer[J]. Oncol Lett, 2016, 12(6): 4598-4604.

[本文引用: 2]

CHEN D S, HURWITZ H. Combinations of bevacizumab with cancer immunotherapy[J]. Cancer J, 2018, 24(4): 193-204.

[本文引用: 1]

BORGSTRÖM P, HUGHES G K, HANSELL P, et al. Leukocyte adhesion in angiogenic blood vessels. Role of E-selectin, P-selectin, and β2 integrin in lymphotoxin-mediated leukocyte recruitment in tumor microvessels[J]. J Clin Invest, 1997, 99(9): 2246-2253.

[本文引用: 1]

WALLIN J J, BENDELL J C, FUNKE R, et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma[J]. Nat Commun, 2016, 7: 12624.

[本文引用: 1]

HUANG Y H, YUAN J P, RIGHI E, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy[J]. Proc Natl Acad Sci U S A, 2012, 109(43): 17561-17566.

[本文引用: 1]

VORON T, COLUSSI O, MARCHETEAU E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors[J]. J Exp Med, 2015, 212(2): 139-148.

[本文引用: 1]

STAGG J, DIVISEKERA U, DURET H, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis[J]. Cancer Res, 2011, 71(8): 2892-2900.

[本文引用: 1]

STAGG J, BEAVIS P A, DIVISEKERA U, et al. CD73-deficient mice are resistant to carcinogenesis[J]. Cancer Res, 2012, 72(9): 2190-2196.

[本文引用: 1]

VIGANO S, ALATZOGLOU D, IRVING M, et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function[J]. Front Immunol, 2019, 10: 925.

[本文引用: 1]

LE X N, NEGRAO M V, REUBEN A, et al. Characterization of the immune landscape of EGFR-mutant NSCLC identifies CD73/adenosine pathway as a potential therapeutic target[J]. J Thorac Oncol, 2021, 16(4): 583-600.

[本文引用: 2]

TU E, MCGLINCHEY K, WANG J X, et al. Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR-mutated NSCLC[J]. JCI Insight, 2022, 7(3): e142843.

[本文引用: 1]

LIANG S Y, RISTICH V, ARASE H, et al. Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6: STAT3 signaling pathway[J]. Proc Natl Acad Sci U S A, 2008, 105(24): 8357-8362.

[本文引用: 1]

GAO A Q, SUN Y P, PENG G Y. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2018, 1869(2): 278-285.

[本文引用: 1]

CHEN X Z, GAO A Q, ZHANG F, et al. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation[J]. Theranostics, 2021, 11(7): 3392-3416.

[本文引用: 1]

BATLLE E, MASSAGUÉ J. Transforming growth factor-β signaling in immunity and cancer[J]. Immunity, 2019, 50(4): 924-940.

[本文引用: 1]

/