Progress in morphology of temporomandibular joints in different sagittal skeletal patterns
WANG Sijie,, SI Jiaping, ZHOU Yu, LUO Dingwen, GAO Lu, CHEN Xiaoyan,
Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
The temporomandibular joint (TMJ) is the most important oral-maxillo-facial joint. Its morphological structure and physiological function are of great significance on long-term stability of treatment results for orthodontics, prosthodontics, occlusal reconstruction, and orthognathic patients. The morphological characteristics of TMJ are affected by many factors, including the cranio-maxillo-facial anatomy, sagittal and vertical skeletal patterns, occlusion of dentition, and function of masticatory muscle. In recent years, due to the improvement of prosthodontic and orthodontic treatment concepts and imaging technology, studies on the distinction of TMJ morphology among different sagittal skeletal patterns have increased. However, there are some differences in the results, and there is a lack of review and summary, leading to no definite conclusions at present. This article aims to summarize the relationship between TMJ morphology and sagittal skeletal patterns from the view of position and morphology of the glenoid fossa and condyle, and analyze the differences among various studies, hoping to further clarify the relationship between different sagittal skeletal patterns and the TMJ morphological characteristics.
WANG Sijie, SI Jiaping, ZHOU Yu, LUO Dingwen, GAO Lu, CHEN Xiaoyan. Progress in morphology of temporomandibular joints in different sagittal skeletal patterns. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(5): 648-654 doi:10.3969/j.issn.1674-8115.2023.05.017
DE CLERCK等[13]利用颌骨支抗配合Ⅲ类颌间牵引的手段成功矫治25例治疗前年龄在9~13岁之间的骨性Ⅲ类患者,发现治疗前后TMJ发生了显著的变化,主要表现为随矫治后髁突后移位相对应的关节窝前壁发生了显著的骨沉积,而关节窝后壁则发生了显著的骨吸收,即关节窝整体相对于颅底矢状向上发生了向后移位,髁突也随之向后移位,从而下颌骨也发生了向后移位,有利于纠正骨性Ⅲ类患者的下颌前突。从治疗结果可以反推,关节窝位置相对于颅底较正常更靠前可能是引起骨性Ⅲ类患者下颌前突错畸形的重要原因。相应地,有相关文献报道,对骨性Ⅱ类患者利用Herbst矫治器进行下颌前导治疗后,关节窝后壁发生骨沉积[14],关节窝整体相对颅底处于更靠前的位置[15],因此使下颌骨的位置更靠前,从而纠正骨性Ⅱ类患者的下颌后缩。从治疗结果也可以反推,关节窝位置相对于颅底较正常更靠后可能是引起骨性Ⅱ类患者下颌后缩错畸形的重要原因。
The review was conceived by WANG Sijie and CHEN Xiaoyan. The manuscript was drafted and revised by WANG Sijie, SI Jiaping and ZHOU Yu. LUO Dingwen and GAO Lu contributed to literature review and manuscript revision. All the authors have read the last version of paper and consented for submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
KURUSU A, HORIUCHI M, SOMA K. Relationship between occlusal force and mandibular condyle morphology. Evaluated by limited cone-beam computed tomography[J]. Angle Orthod, 2009, 79(6): 1063-1069.
SCHIFFMAN E, OHRBACH R, TRUELOVE E, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the international RDC/TMD consortium network and orofacial pain special interest group[J]. J Oral Facial Pain Headache, 2014, 28(1): 6-27.
NICKEL J C, MCLACHLAN K R, SMITH D M. A theoretical model of loading and eminence development of the postnatal human temporomandibular joint[J]. J Dent Res, 1988, 67(6): 903-910.
KARLO C A, STOLZMANN P, HABERNIG S, et al. Size, shape and age-related changes of the mandibular condyle during childhood[J]. Eur Radiol, 2010, 20(10): 2512-2517.
KATSAVRIAS E G, HALAZONETIS D J. Condyle and fossa shape in Class Ⅱ and Class Ⅲ skeletal patterns: a morphometric tomographic study[J]. Am J Orthod Dentofacial Orthop, 2005, 128(3): 337-346.
PENG Q P, WU J. Research progress on the influence of exogenous factors on the growth and reconstruction of condyle[J]. HUAXI Journal of Stomatology, 2017, 35(6): 643-647.
HE Y, LI S. Research progress on the developmental difference between condyle cartilage and growth plate cartilage[J]. Chinese Journal of Practical Stomatology, 2009, 2(8): 498-501.
MENGI A, SHARMA V P, TANDON P, et al. A cephalometric evaluation of the effect of glenoid fossa location on craniofacial morphology[J]. J Oral Biol Craniofac Res, 2016, 6(3): 204-212.
COSTA H N, SLAVICEK R, SATO S. A computerized tomography study of the morphological interrelationship between the temporal bones and the craniofacial complex[J]. J Anat, 2012, 220(6): 544-554.
DE CLERCK H, NGUYEN T, DE PAULA L K, et al. Three-dimensional assessment of mandibular and glenoid fossa changes after bone-anchored Class Ⅲ intermaxillary traction[J]. Am J Orthod Dentofacial Orthop, 2012, 142(1): 25-31.
NINDRA J, SIDHU M S, KOCHHAR A S, et al. Three-dimensional evaluation of condyle-glenoid fossa complex following treatment with herbst appliance[J]. J Clin Med, 2021, 10(20): 4730.
LECORNU M, CEVIDANES L H, ZHU H, et al. Three-dimensional treatment outcomes in Class Ⅱ patients treated with the Herbst appliance: a pilot study[J]. Am J Orthod Dentofacial Orthop, 2013, 144(6): 818-830.
DE MATTOS J M, PALOMO J M, DE OLIVEIRA RUELLAS A C, et al. Three-dimensional positional assessment of glenoid fossae and mandibular condyles in patients with Class Ⅱ subdivision malocclusion[J]. Angle Orthod, 2017, 87(6): 847-854.
HUANG M, HU Y, YU J, et al. Cone-beam computed tomographic evaluation of the temporomandibular joint and dental characteristics of patients with Class Ⅱ subdivision malocclusion and asymmetry[J]. Korean J Orthod, 2017, 47(5): 277-288.
GIUNTINI V, DE TOFFOL L, FRANCHI L, et al. Glenoid fossa position in Class Ⅱ malocclusion associated with mandibular retrusion[J]. Angle Orthod, 2008, 78(5): 808-812.
LOBO F, TOLENTINO E S, IWAKI L C V, et al. Imaginology tridimensional study of temporomandibular joint osseous components according to sagittal skeletal relationship, sex, and age[J]. J Craniofac Surg, 2019, 30(5): 1462-1465.
KATSAVRIAS E G. Morphology of the temporomandibular joint in subjects with Class Ⅱ Division 2 malocclusions[J]. Am J Orthod Dentofacial Orthop, 2006, 129(4): 470-478.
OBERG T, CARLSSON G E, FAJERS C M. The temporomandibular joint. A morphologic study on a human autopsy material[J]. Acta Odontol Scand, 1971, 29(3): 349-384.
WRIGHT D M, MOFFETT B C. The postnatal development of the human temporomandibular joint[J]. Am J Anat, 1974, 141(2): 235-249.
SCOTT H J. Growth changes in the glenoid fossa[J]. Dental Pract, 1955, 6: 117-120.
GORUCU-COSKUNER H, CIGER S. Computed tomography assessment of temporomandibular joint position and dimensions in patients with class Ⅱ division 1 and division 2 malocclusions[J]. J Clin Exp Dent, 2017, 9(3): e417-e423.
SONG J, CHENG M, QIAN Y, et al. Cone-beam CT evaluation of temporomandibular joint in permanent dentition according to Angle′s classification[J]. Oral Radiol, 2020, 36(3): 261-266.
CUI Y, TANG T Q, LIU L. CBCT study of morphological characteristics of temporomandibular joint in patients with different sagittal skeletal patterns[J]. Chinese Journal of Practical Stomatology, 2016, 9(6): 348-353.
KANDASAMY S, GREENE C S, OBREZ A. An evidence-based evaluation of the concept of centric relation in the 21st century[J]. Quintessence Int, 2018, 49(9): 755-760.
KAUR A, NATT A S, MEHRA S K, et al. Improved visualization and assessment of condylar position in the glenoid fossa for different occlusions: a CBCT study[J]. Contemp Dent Pract, 2016, 17(8):679-686.
PAKNAHAD M, SHAHIDI S, ABBASZADE H. Correlation between condylar position and different sagittal skeletal facial types[J]. J Orofac Orthop, 2016, 77(5): 350-356.
ARIETA-MIRANDA J M, SILVA-VALENCIA M, FLORES-MIR C, et al. Spatial analysis of condyle position according to sagittal skeletal relationship, assessed by cone beam computed tomography[J]. Prog Orthod, 2013, 14: 36.
KRISJANE Z, URTANE I, KRUMINA G, et al. Three-dimensional evaluation of TMJ parameters in Class Ⅱ and Class Ⅲ patients[J]. Stomatologija, 2009, 11(1): 32-36.
CHAE J M, PARK J H, TAI K, et al. Evaluation of condyle-fossa relationships in adolescents with various skeletal patterns using cone-beam computed tomography[J]. Angle Orthod, 2020, 90(2): 224-232.
SACCUCCI M, D′ATTILIO M, RODOLFINO D, et al. Condylar volume and condylar area in class Ⅰ, class Ⅱ and class Ⅲ young adult subjects[J]. Head Face Med, 2012, 8: 34.
MA Q, BIMAL P, MEI L, et al. Temporomandibular condylar morphology in diverse maxillary-mandibular skeletal patterns: a 3-dimensional cone-beam computed tomography study[J]. J Am Dent Assoc, 2018, 149(7): 589-598.
GARCÍA-DÍAZ R, ARRIOLA-GUILLÉN L E, ALIAGA-DEL CASTILLO A, et al. 2D-3D comparison of the temporomandibular joint in skeletal Class Ⅱ versus Class Ⅰ adults: a retrospective study[J]. Int Orthod, 2020, 18(4): 784-793.
SANTANDER P, QUAST A, OLBRISCH C, et al. Comprehensive 3D analysis of condylar morphology in adults with different skeletal patterns-a cross-sectional study[J]. Head Face Med, 2020, 16(1): 33.
NOH K J, BAIK H S, HAN S S, et al. Differences in mandibular condyle and glenoid fossa morphology in relation to vertical and sagittal skeletal patterns: a cone-beam computed tomography study[J]. Korean J Orthod, 2021, 51(2): 126-134.
IGUCHI R, YOSHIZAWA K, MOROI A, et al. Comparison of temporomandibular joint and ramus morphology between class Ⅱ and class Ⅲ cases before and after bi-maxillary osteotomy[J]. J Craniomaxillofac Surg, 2017, 45(12): 2002-2009.
AL MAAITAH E F, ALOMARI S, AL-KHATEEB S N, et al. Cranial base measurements in different anteroposterior skeletal relationships using Bjork-Jarabak analysis[J]. Angle Orthod, 2022, 92(5):613-618.
LIN M, XU Y, WU H, et al. Comparative cone-beam computed tomography evaluation of temporomandibular joint position and morphology in female patients with skeletal class Ⅱ malocclusion[J]. J Int Med Res, 2020, 48(2): 300060519892388.
AL-HADAD S A, ALYAFRUSEE E S, ABDULQADER A A, et al. Comprehensive three-dimensional positional and morphological assessment of the temporomandibular joint in skeletal Class Ⅱ patients with mandibular retrognathism in different vertical skeletal patterns[J]. BMC Oral Health, 2022, 22(1): 149.
PAKNAHAD M, SHAHIDI S. Association between condylar position and vertical skeletal craniofacial morphology: a cone beam computed tomography study[J]. Int Orthod, 2017, 15(4): 740-751.
GANUGAPANTA V R, PONNADA S R, GADDAM K P, et al. Computed tomographic evaluation of condylar symmetry and condyle-fossa relationship of the temporomandibular joint in subjects with normal occlusion and malocclusion: a comparative study[J]. J Clin Diagn Res, 2017, 11(2): ZC29-ZC33.
BARRERA-MORA J M, ESCALONA E E, LABRUZZI C A, et al. The relationship between malocclusion, benign joint hypermobility syndrome, condylar position and TMD symptoms[J]. CRANIO, 2012, 30(2): 121-130.
PAKNAHAD M, SHAHIDI S. Association between mandibular condylar position and clinical dysfunction index[J]. J Craniomaxillofac Surg, 2015, 43(4): 432-436.
TALAAT W, AL BAYATTI S, AL KAWAS S. CBCT analysis of bony changes associated with temporomandibular disorders[J]. CRANIO, 2016, 34(2): 88-94.
SHOKRI A, ZARCH H H, HAFEZMALEKI F, et al. Comparative assessment of condylar position in patients with temporomandibular disorder (TMD) and asymptomatic patients using cone-beam computed tomography[J]. Dent Med Probl, 2019, 56(1): 81-87.
MA J, WANG J, HUANG D, et al. A comparative study of condyle position in temporomandibular disorder patients with chewing side preference using cone-beam computed tomography[J]. J Oral Rehabil, 2022, 49(2): 265-271.
YANG I H, MOON B S, LEE S P, et al. Skeletal differences in patients with temporomandibular joint disc displacement according to sagittal jaw relationship[J]. J Oral Maxillofac Surg, 2012, 70(5): e349-e360.
MANFREDINI D, SEGÙ M, ARVEDA N, et al. Temporomandibular joint disorders in patients with different facial morphology. A systematic review of the literature[J]. J Oral Maxillofac Surg, 2016, 74(1): 29-46.
UEKI K, NAKAGAWA K, TAKATSUKA S, et al. Temporomandibular joint morphology and disc position in skeletal class Ⅲ patients[J]. J Craniomaxillofac Surg, 2000, 28(6): 362-368.
... DE CLERCK等[13]利用颌骨支抗配合Ⅲ类颌间牵引的手段成功矫治25例治疗前年龄在9~13岁之间的骨性Ⅲ类患者,发现治疗前后TMJ发生了显著的变化,主要表现为随矫治后髁突后移位相对应的关节窝前壁发生了显著的骨沉积,而关节窝后壁则发生了显著的骨吸收,即关节窝整体相对于颅底矢状向上发生了向后移位,髁突也随之向后移位,从而下颌骨也发生了向后移位,有利于纠正骨性Ⅲ类患者的下颌前突.从治疗结果可以反推,关节窝位置相对于颅底较正常更靠前可能是引起骨性Ⅲ类患者下颌前突错畸形的重要原因.相应地,有相关文献报道,对骨性Ⅱ类患者利用Herbst矫治器进行下颌前导治疗后,关节窝后壁发生骨沉积[14],关节窝整体相对颅底处于更靠前的位置[15],因此使下颌骨的位置更靠前,从而纠正骨性Ⅱ类患者的下颌后缩.从治疗结果也可以反推,关节窝位置相对于颅底较正常更靠后可能是引起骨性Ⅱ类患者下颌后缩错畸形的重要原因. ...
1
... DE CLERCK等[13]利用颌骨支抗配合Ⅲ类颌间牵引的手段成功矫治25例治疗前年龄在9~13岁之间的骨性Ⅲ类患者,发现治疗前后TMJ发生了显著的变化,主要表现为随矫治后髁突后移位相对应的关节窝前壁发生了显著的骨沉积,而关节窝后壁则发生了显著的骨吸收,即关节窝整体相对于颅底矢状向上发生了向后移位,髁突也随之向后移位,从而下颌骨也发生了向后移位,有利于纠正骨性Ⅲ类患者的下颌前突.从治疗结果可以反推,关节窝位置相对于颅底较正常更靠前可能是引起骨性Ⅲ类患者下颌前突错畸形的重要原因.相应地,有相关文献报道,对骨性Ⅱ类患者利用Herbst矫治器进行下颌前导治疗后,关节窝后壁发生骨沉积[14],关节窝整体相对颅底处于更靠前的位置[15],因此使下颌骨的位置更靠前,从而纠正骨性Ⅱ类患者的下颌后缩.从治疗结果也可以反推,关节窝位置相对于颅底较正常更靠后可能是引起骨性Ⅱ类患者下颌后缩错畸形的重要原因. ...
1
... DE CLERCK等[13]利用颌骨支抗配合Ⅲ类颌间牵引的手段成功矫治25例治疗前年龄在9~13岁之间的骨性Ⅲ类患者,发现治疗前后TMJ发生了显著的变化,主要表现为随矫治后髁突后移位相对应的关节窝前壁发生了显著的骨沉积,而关节窝后壁则发生了显著的骨吸收,即关节窝整体相对于颅底矢状向上发生了向后移位,髁突也随之向后移位,从而下颌骨也发生了向后移位,有利于纠正骨性Ⅲ类患者的下颌前突.从治疗结果可以反推,关节窝位置相对于颅底较正常更靠前可能是引起骨性Ⅲ类患者下颌前突错畸形的重要原因.相应地,有相关文献报道,对骨性Ⅱ类患者利用Herbst矫治器进行下颌前导治疗后,关节窝后壁发生骨沉积[14],关节窝整体相对颅底处于更靠前的位置[15],因此使下颌骨的位置更靠前,从而纠正骨性Ⅱ类患者的下颌后缩.从治疗结果也可以反推,关节窝位置相对于颅底较正常更靠后可能是引起骨性Ⅱ类患者下颌后缩错畸形的重要原因. ...