上海交通大学学报(医学版), 2023, 43(6): 761-767 doi: 10.3969/j.issn.1674-8115.2023.06.013

综述

线粒体功能障碍与骨质疏松症相关性研究进展

金芳全,1, 樊成虎2, 唐晓栋,2, 陈彦同2, 齐兵献2

1.甘肃中医药大学中医临床学院,兰州 730030

2.甘肃省中医院脊柱中心,兰州 730050

Research progress in the relationship between mitochondrial dysfunction and osteoporosis

JIN Fangquan,1, FAN Chenghu2, TANG Xiaodong,2, CHEN Yantong2, QI Bingxian2

1.Clinical College of Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730030

2.Gansu Provincial Hospital of Traditional Chinese Medicine Spine Center, Lanzhou 730050

通讯作者: 唐晓栋,电子信箱:1927981689@qq.com

编委: 邵碧云

收稿日期: 2023-02-08   接受日期: 2023-06-21   网络出版日期: 2023-06-28

基金资助: 国家自然科学基金.  81760877
甘肃省科技厅重点研发计划社会发展类项目.  21ZD4FA009
甘肃省中医药重点课题.  GZKZ-2021-3
甘肃省中医药科研课题.  GZKP-2021-12

Corresponding authors: TANG Xiaodong, Email:1927981689@qq.com.

Received: 2023-02-08   Accepted: 2023-06-21   Online: 2023-06-28

作者简介 About authors

金芳全(1994—),男,硕士生,电子信箱:3214555282@qq.com。 E-mail:3214555282@qq.com

摘要

骨质疏松症(osteoporosis,OP)是一种以骨量减少、骨脆性增加为特征的慢性老年性骨病,诱发因素较多且发病机制复杂。探究OP机制,提高临床疗效一直是生命科学领域的研究热点。近年来研究发现线粒体在OP发病机制中具有重要意义。线粒体能量代谢、线粒体氧化应激、线粒体自噬、线粒体介导的凋亡、线粒体动力学等功能异常均可通过不同信号通路、细胞因子及蛋白质表达干预骨髓间充质干细胞分化命运,调控成骨细胞活性及增殖分化,启动破骨细胞凋亡程序。因此以线粒体为靶点,调节线粒体能量代谢、氧化应激、自噬、动力学等功能,诱导骨髓间充质干细胞成骨分化,促进成骨细胞分化与矿化,诱导破骨细胞凋亡是防治OP的潜在策略。该文查阅国内外相关文献,就线粒体功能障碍在OP中的作用机制作一综述,以期为进一步研究奠定基础。

关键词: 线粒体 ; 骨质疏松症 ; 氧化应激 ; 自噬 ; 线粒体动力学

Abstract

Osteoporosis (OP) is a chronic senile bone disease characterized by decreased bone mass and increased bone fragility. There are many inducing factors and the pathogenesis is complex. To explore the mechanism of OP and improve clinical efficacy has always been a hot topic in life science. In recent years, it has been found that mitochondria play an important role in the pathogenesis of OP. Functional abnormalities such as mitochondrial energy metabolism, mitochondrial oxidative stress, mitochondrial autophagy, mitochondrial-mediated apoptosis and mitochondrial dynamics can interfere with the differentiation of bone marrow mesenchymal stem cells through different signal pathways, cytokines and protein expression to regulate osteoblast activity, proliferation and differentiation, and start the process of osteoclast apoptosis. Therefore, taking mitochondria as the target, regulating the functions of mitochondrial energy metabolism, oxidative stress, autophagy and kinetics, inducing osteogenic differentiation of bone marrow mesenchymal stem cells, promoting osteoblast differentiation and mineralization, and inducing osteoclast apoptosis are potential strategies for the prevention and treatment of OP. In this article, the mechanism of mitochondrial dysfunction in OP was reviewed by referring to relevant literature at home and abroad, in order to lay a foundation for further research.

Keywords: mitochondria ; osteoporosis ; oxidative stress ; autophagy ; mitochondrial dynamics

PDF (1922KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

金芳全, 樊成虎, 唐晓栋, 陈彦同, 齐兵献. 线粒体功能障碍与骨质疏松症相关性研究进展. 上海交通大学学报(医学版)[J], 2023, 43(6): 761-767 doi:10.3969/j.issn.1674-8115.2023.06.013

JIN Fangquan, FAN Chenghu, TANG Xiaodong, CHEN Yantong, QI Bingxian. Research progress in the relationship between mitochondrial dysfunction and osteoporosis. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(6): 761-767 doi:10.3969/j.issn.1674-8115.2023.06.013

骨质疏松症(osteoporosis,OP)是骨组织微环境恶化打破了破骨细胞(osteoclast,OC)与成骨细胞(osteoblast,OB)之间的偶联平衡,使骨吸收大于骨形成的慢性代谢性骨病1。据统计,中国绝经女性OP患病率为38.0%~39.3%2。根据微观模拟模型预测,从2020年到2040年,中国将有2.417亿骨质疏松性骨折患者,其治疗成本约9.97亿美元3。全球每年超过890万人因骨质疏松而骨折,由此产生的医疗成本超过375亿欧元4。随着人口老龄化日趋严重,OP已成为全球健康问题焦点。研究发现线粒体作为真核细胞能量代谢的中心,不仅通过糖酵解、氧化磷酸化(oxidative phosphorylation,OXPHOS)产生三磷酸腺苷(adenosine triphosphate,ATP),还能通过能量代谢转换、线粒体膜电位(mitochondrial membrane potential,MMP)变化、细胞内活性氧(reactive oxygen species,ROS)产生和氧化应激等多种机制调节骨髓间充质干细胞(bone mesenchymal stem cells,BMSCs)的功能5。随着对细胞生物学的深入研究,研究人员发现干预线粒体特定功能可影响BMSCs成骨分化、OB活性及OC凋亡,靶向线粒体途径成为治疗OP潜在方案。本文围绕线粒体功能障碍与OP相关性,探讨OP发病机制,希冀为今后抗OP治疗药物研发提供一定理论依据。

1 线粒体与骨组织细胞

1.1 线粒体与OB

OXPHOS与糖酵解相比可产生更多的ATP。然而,OB作为骨骼重塑单位的骨形成细胞,在氧气充足的情况下更倾向于使用有氧糖酵解方式将葡萄糖转化为乳酸,而不是三羧酸循环(tricarboxylic acid cycle,TCA)6。在OB中葡萄糖的有氧糖酵解反应产生的能量占到80%左右,并且随着OB的成熟,线粒体呼吸反应逐渐减弱,有氧糖酵解成为主要的能量获取方式7。但是OB中有氧糖酵解的分子机制尚不明确,可能机制是哺乳动物雷帕霉素靶蛋白复合物2(mammalian rapamycin target protein complex 2,mTORC2)介导甲状旁腺激素信号通路通过间接调控胰岛素样生长因子1受体,促进低氧诱导因子-1α(hypoxia inducible factor-1α,Hif-1α)过表达,增强有氧糖酵解,促进骨形成8

1.2 线粒体与OC

OC是体内负责吸收骨基质的细胞,在核因子-κB受体活化因子配体(receptor activator of nuclear factor-κB ligand,RANKL)刺激巨噬细胞向破骨前体细胞分化的过程中,OXPHOS以及有氧糖酵解都有明显增加,线粒体大小和数量随之增加。成熟OC含有大量线粒体9。此外,OXPHOS与糖酵解在OC分化这一过程中发生偶联反应,共同影响OC分化与成熟。过氧化物酶体增殖物激活受体γ共激活因子-1(peroxisome proliferator-activated receptor γ coactivator-1,PGC-1)是调控线粒体生物发生的重要因子,在RANKL诱导OC形成过程中,PGC-1β的表达增加;体外敲低PGC-1β,线粒体基因表达受到抑制,OC分化受到抑制,PGC-1β敲除的成熟OC功能也受抑制10。与PGC-1β共同协调发挥作用的还有氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)。OC分化过程中,PPARγ的激活可下调β-catenin,降低c-jun的含量,间接诱导PGC-1β表达;反过来,PGC-1β充当PPARγ共激活剂,刺激OC分化11。因此,诱导PGC-1β、PPARγ等关键因子表达,调节线粒体功能,抑制OC细胞分化,对防治OP具有重要意义。

1.3 线粒体与BMSCs

BMSCs作为多能干细胞可分化为OB、成脂细胞和成软骨细胞,并维持自我更新和分化的平衡。线粒体在BMSCs成骨分化中扮演关键角色。在成骨分化的过程中,细胞耗氧量和内源性ATP生成量都会显著提高,抑制线粒体功能将阻碍成骨分化12。此外,在成骨分化过程中,OXPHOS可产生大量的ROS,同时激活线粒体抗氧化途径,抑制内源性ROS累积。BMSCs中活性氧水平升高会抑制细胞成骨矿化能力,因此激活BMSCs抗氧化途径可以提高细胞成骨能力和促进体内骨形成13。更需注意的是,线粒体会根据BMSCs不同功能进行融合、裂变、降解等以满足其需求。在未分化的BMSCs中,线粒体呈破碎球形;随着BMSCs的成骨分化、成脂分化和成熟,线粒体呈细长型,均匀地分散在整个细胞质14。因此,通过干预线粒体的融合、裂变、降解等线粒体动力学行为,能够调节BMSCs成骨分化和OB的功能。

2 线粒体功能障碍与OP

线粒体在调控呼吸链反应中起主导作用,通过OXPHOS生成ATP并为宿主细胞供能。在传送ATP的过程中有部分电子逃逸而不能完成使命,完全暴露并被氧化后生成ROS15。在衰老的细胞组织中ROS不断蓄积发生氧化应激,对线粒体DNA(mitochondrial DNA,mtDNA)、脂质、蛋白质造成损伤,加速BMSCs、OB、OC等细胞衰老和凋亡。线粒体能量代谢、线粒体氧化应激、线粒体自噬、线粒体介导的凋亡、线粒体动力学等方面异常造成线粒体功能障碍而诱发OP。故增强线粒体功能是治疗OP的潜在策略。以下围绕线粒体功能障碍在OP中的作用机制作一总结(图1)。

图1

图1   线粒体功能障碍在OP中的作用机制及关键因子

Fig1   Mechanism and key factors of mitochondrial dysfunction in OP


2.1 线粒体能量代谢与OP

细胞中产生ATP的方式主要有3种:一是糖酵解,二是TCA,三是线粒体OXPHOS。糖酵解和TCA产生还原型烟酰胺腺嘌呤二核苷酸、还原型黄素腺嘌呤二核苷酸和其他分子,而OXPHOS利用这些物质还原氧气并合成ATP16。BMSCs增殖和自我更新时通过糖酵解获取能量,在分化时通过OXPHOS和TCA产生更多ATP,这可能是因为无氧代谢可避免ROS对mtDNA和细胞膜造成氧化损伤17。在BMSCs成骨分化时线粒体膜蛋白和mtDNA数量显著增加,PGC-1α表达上调,促进OXPHOS产生ATP为其供能18。抑制糖酵解时,线粒体呼吸减弱,ROS产生减少,而细胞内ROS减少可降低氧化应激损伤,激活神经源性位点缺口同源蛋白(neurogenic loci gap homologous protein,Notch)信号通路,增加BMSCs成骨分化,促进骨形成19。HIF-1α是调节线粒体代谢途径的关键转录因子,在TCA中下调HIF-1α会抑制骨细胞对葡萄糖的摄取和OC对骨吸收20。因此,调节mtDNA数量和HIF-1αPGC-1α基因表达,改变线粒体能量代谢途径,诱导BMSCs成骨分化可治疗OP。

线粒体途径诱导BMSCs分化不只有增强OXPHOS一条途径。SHARES等21发现,线粒体TCA产生的乙酰辅酶A作为转移酶参与蛋白质乙酰化反应,阻止β-catenin蛋白降解,通过乙酰化促进β-catenin信号传递,增强成骨转录因子2(Runt-related transcription factor 2,Runx2)的活性,诱导BMSCs成骨分化。线粒体中能量代谢包括葡萄糖、脂肪酸、氨基酸的摄取、转移和分解。在OC分化的过程中,线粒体中长链脂肪酸β氧化增加,抑制这一途径可减少OC增殖而抗OP22

综上所述,线粒体能量代谢可影响BMSCs、OB、OC增殖、分化,改变能量代谢途径,调控能量代谢相关因子HIF-1α、PGC-1α表达,干预蛋白质乙酰化、脂肪酸β氧化等途径,诱导BMSCs成骨分化,抑制OC增殖分化是抗OP的潜在手段,也是今后的研究方向。

2.2 线粒体氧化应激与OP

氧化应激是线粒体产生ROS,包括超氧自由基、过氧化氢等,ROS蓄积过多启动超氧化物歧化酶2(superoxide dismutase 2,SOD2)和过氧化氢酶(catalase,CAT)等酶组成的抗氧化机制。线粒体氧化应激异常是指氧自由基与抗氧化酶之间的平衡被打破。近年来研究认为氧化应激是OP的致病因素之一,ROS降低OB活性、数量,影响骨形成23。随着线粒体功能研究兴起,对ROS作为信号分子有了新认识。研究发现在BMSCs成脂分化中,ROS生成和表达水平明显升高,高浓度ROS会抑制成骨分化,并且激活PPARγ正反馈调节,从而加速BMSCs的成脂分化24。用OXPHOS抑制剂处理BMSCs,可使线粒体失活无法生成ROS,阻断β-catenin乙酰化,降低BMSCs成骨分化潜力21。因此,ROS水平影响BMSCs的分化方向,调控线粒体氧化应激可以干预BMSCs的分化命运。

线粒体氧化应激异常亦影响着OB和OC增殖分化。锰四卟啉作为SOD抗氧化剂可以防止卵巢切除大鼠因过氧化氢诱发的氧化应激状态上调,增加骨形态发生蛋白2(bone morphogenetic protein,BMP2)基因表达,促进OB增殖和OC凋亡25。褪黑素是松果体分泌的吲哚胺,调节生物昼夜节律。近年来研究发现褪黑素具有抗氧化特性,能调节骨吸收和骨形成之间的平衡。实验证实褪黑素可提高碱性磷酸酶的活性、OB矿化能力,增加过氧化氢处理的MC3T3-E1细胞中BMP2、Runx2和骨桥蛋白的表达,激活沉默信息调节因子1(silent information regulator 1,SIRT1)调节SIRT3的活性,降低细胞内ROS水平,增加SOD2活性25-26。雌激素能抗氧化应激,保护脂蛋白,抑制OC分化和促进OC凋亡,缺乏雌激素可导致脂质积累、加重线粒体氧化应激,导致骨流失27

综上所述,调控线粒体内氧自由基可以影响BMSCs的分化方向、OB和OC增殖及凋亡,线粒体氧化应激异常时会导致OP。

2.3 线粒体自噬与OP

线粒体自噬是指通过自噬降解受损或功能障碍的线粒体,清除受损蛋白质,对控制线粒体质量、维持细胞内稳态有重要意义28。线粒体自噬可以清除BMSCs中氧化应激受损的细胞器,保护细胞免于凋亡,并增强BMSCs干性29。用过氧化氢处理BMSCs后,线粒体自噬程序比凋亡先激活30。微管相关蛋白1轻链3(microtubule associated protein 1 light chain 3,LC3)是启动自噬的标志蛋白。免疫印迹分析显示,经过氧化氢处理的BMSCs早期,LC3-Ⅱ的表达水平明显升高,JNK磷酸化被激活。当过氧化氢处理时间延长时,LC3-Ⅱ表达减少,氧化损伤的线粒体积累,并同步触发BMSCs凋亡。线粒体自噬不仅是BMSCs早期面对氧化应激的自我防御机制,还可以改变BMSCs分化方向。SIRT3过量表达可以改善线粒体异常自噬,缓解高糖诱导的BMSCs衰老,抑制BMSCs的成脂分化,诱导成骨分化,治疗老年性OP31

线粒体自噬也在调节OB和OC命运中发挥重要作用。线粒体铁蛋白(mitochondrial ferritin,FtMt)是一种储存铁离子并在细胞线粒体中拦截亚铁离子的蛋白质。FtMt过量表达可降低碱性磷酸酶活性,下调骨保护素表达,抑制OB矿化,增加OB内ROS水平,抑制FtMt激活张力蛋白同源物诱导激酶1(PTEN-induced putative kinase 1,PINK1)信号通路,促进OB线粒体自噬32。生理状态下OC介导了骨吸收。LAHA等33发现,多酚类化合物可以减少ROS的产生,抑制线粒体自噬,降低细胞内Ca2+水平和MMP来抑制OC的分化。AOKI等34的研究更加明确了线粒体自噬调控OC的机制。OC早期增殖、分化的过程中,线粒体自噬作用增强;在OC分化末期,MMP降低,ROS增加,自噬活性受mTORC1下游负向调节,线粒体自噬被抑制,氧化应激促进OC凋亡。

综上所述,线粒体自噬影响BMSCs、OB、OC分化,分别涉及JNK、PINK1、TORC等不同信号通路,通过抑制或激活相关信号通路干预线粒体自噬治疗OP是新的研究方向。

2.4 线粒体介导的凋亡与OP

细胞凋亡是调节细胞死亡的一种主要形式。线粒体介导的凋亡是指B细胞淋巴瘤2(B cell lymphoma 2,Bcl-2)调控关闭Bcl-2相关X蛋白(Bcl-2 associated X protein,Bax)在线粒体外膜上形成的通道,阻断细胞色素C释放,降低线粒体外膜通透性,激活半胱氨酸天冬氨酸蛋白酶(cysteinyl aspartate specific proteinase,caspase)3和7,调控细胞凋亡35。随着生物科技发展,BMSCs移植已广泛应用于组织修复和再生,但因移植过程中干细胞的高凋亡率而使其保存技术亟需改进36。Bcl-2和Bax的比率决定了线粒体介导的细胞凋亡后果37,近期有研究佐证这一观点38。含镁基质中BMSCs内SOD2和CAT活性增强,JC-1染色后观察到MMP升高,PCR检测Bcl-2/Bax的比率升高,BMSCs凋亡被抑制。因此,提高Bcl-2/Bax比率,抑制骨形成相关细胞凋亡是防治OP的新思路。

靶向干预线粒体介导的凋亡,能逆转OB凋亡,还可抑制OC形成。随着研究的深入,二甲双胍不仅被用于治疗糖尿病,还被发现对OP也有疗效。YANG等39研究发现二甲双胍可通过磷脂酰肌醇3(phosphatidylinositol 3 kinase,PI3K)途径上调OB细胞中SIRT3表达,下调Bax和caspase-3水平,抑制OB凋亡。辅酶Q10是一种亲脂性电子载体,参与线粒体能量代谢;其作为内源性抗氧化剂,可降低线粒体中Bcl-2和细胞色素C的水平,上调细胞质中Bax、caspase3蛋白表达,抑制OC形成,促进OC凋亡,增加骨密度和骨小梁数量,可用于治疗OP40

综上所述,线粒体介导的细胞凋亡与促进Bcl-2、抑制Bax表达有关,可通过改变线粒体外膜通透性,激活caspase蛋白启动凋亡联级,诱导OC凋亡而防治OP。

2.5 线粒体动力学与OP

线粒体动力学是指线粒体动态分裂和融合。通过分裂增加其数量,维持细胞极性,消除受损的线粒体,该过程由线粒体动力相关蛋白1(dynamin-related protein 1,Drp1)和线粒体分裂因子调控;融合时线粒体进行内容物交换和连接,提供ATP,减轻氧化损伤,并维持MMP,该过程由线粒体外膜的视神经萎缩蛋白1(optic atrophy protein-1,OPA1)、内膜丝裂蛋白介导41。线粒体动力学通过协调能量供应、细胞内ROS产生和钙平衡来调节细胞命运。在BMSCs分化、成熟的过程中,启动OXPHOS,线粒体延长并且互相连接,Drp1表达增加,OPA1表达下降,在聚丙烯酸与胶原膜复合体基质中,矿化结节增多,这说明线粒体分裂有利于BMSCs向成骨分化并矿化42-43。与之相反,BMSCs凋亡伴随线粒体异常分裂,过度分裂发生时,细胞内Ca2+内流,导致β-catenin蛋白降解,损害BMSCs分化功能44

在骨重建过程中,OB分化及矿化是关键。PAHWA等45报道11.1 mol/L的高糖环境诱导MC3T3-E1分化为OB,并加速其分化及矿化;实验中线粒体分裂被抑制,Drp1表达减少,线粒体融合增加。然而,线粒体通过分裂还是融合调节OC尚不明确。OC分化过程中,Drp1蛋白及受体表达增加,线粒体体积增大,脊呈扁平结构,内膜面积增大,可能与线粒体融合有关46-47

综上所述,线粒体动力学异常影响BMSCs、OB、OC增殖、分化主要与Drp1、OPA1蛋白有关,但具体是分裂还是融合仍需进一步研究。

3 总结与展望

线粒体不仅是能量代谢的细胞器,还是生物信息传递中枢。随着生命科学不断发展,线粒体与骨质疏松的关系不断被揭示。线粒体功能异常影响BMSCs、MC3T3-E1、OB、OC等骨形成相关细胞的活性、增殖、分化、凋亡、衰老等过程,激活Wnt/β-catenin、PI3K/AKT通路或抑制Notch通路可促进BMSCs、MC3T3-E1、OB分化,激活NF-κB通路可诱导线粒体凋亡,激活TORC可促进OC凋亡,上调PGC-1α、Bcl-2、SIRT3、LC-3Ⅱ、DRp1以及下调HIF-1α、FtMt、Bax、OPA1等细胞因子可诱发OP。线粒体能量代谢和氧化应激的异常可引起线粒体自噬、线粒体介导的凋亡和线粒体动力学异常,因此调节线粒体能量代谢、启动抗氧化应激在治疗OP中至关重要。然而,当前研究仍有不足。首先,当前以线粒体为靶点治疗OP主要集中在抗氧化应激,ROS蓄积是否诱发线粒体介导的凋亡、自噬、动力学异常及其调节机制尚不明确。其次,线粒体调控骨形成涉及多条信号通路,但信号通路之间是否相互协调发挥作用仍需进一步研究。最后,调控线粒体功能治疗OP的研究多为动物实验,缺乏高质量、多中心的临床试验。总而言之,针对线粒体进行深入研究有利于揭示OP病理机制,为OP防治提供新靶点和新策略。

作者贡献声明

金芳全提出文章的创新点,搜集整理文献,并负责撰写;唐晓栋和樊成虎进行文章指导、审校,并予以经费支持;陈彦同参与文献查询;齐兵献参与论文修改及文章框架结构的调整。所有作者均阅读并同意了最终稿件的提交。

AUTHOR's CONTRIBUTIONS

JIN Fangquan put forward the innovation of the article, collected and sorted out the literature, and was responsible for writing. TANG Xiaodong and FAN Chenghu conducted the article guidance, revision and financial support. CHEN Yantong participated in the literature inquiry. QI Bingxian participated in the revision of the paper and the adjustment of the article frame structure. All the authors read and agreed to the submission of the final manuscript.

利益冲突声明

所有作者声明不存在利益冲突。

COMPETING INTERESTS

All authors disclose no relevant conflict of interests.

参考文献

JIANG Y H, ZHANG P, ZHANG X, et al. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis[J]. Cell Prolif, 2021, 54(1): e12956.

[本文引用: 1]

吴惠一, 刘颖, 兰亚佳, 等. 中国绝经女性骨质疏松症患病率的Meta分析[J]. 中国循证医学杂志, 2022, 22(8): 882-890.

[本文引用: 1]

WU H Y, LIU Y, LAN Y J, et al. Meta-analysis of the prevalence of osteoporosis in Chinese postmenopausal women[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(8):882-890.

[本文引用: 1]

CUI L J, JACKSON M, WESSLER Z, et al. Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among women in China: a simulation projection model from 2020 to 2040[J]. Arch Osteoporos, 2021, 16(1): 118.

[本文引用: 1]

LORENTZON M, JOHANSSON H, HARVEY N C, et al. Osteoporosis and fractures in women: the burden of disease[J]. Climacteric, 2022, 25(1): 4-10.

[本文引用: 1]

YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140.

[本文引用: 1]

LEE W C, GUNTUR A R, LONG F X, et al. Energy metabolism of the osteoblast: implications for osteoporosis[J]. Endocr Rev, 2017, 38(3): 255-266.

[本文引用: 1]

DONAT A, KNAPSTEIN P R, JIANG S, et al. Glucose metabolism in osteoblasts in healthy and pathophysiological conditions[J]. Int J Mol Sci, 2021, 22(8): 4120.

[本文引用: 1]

LI T C, YAN Z Q, HE S S, et al. Intermittent parathyroid hormone improves orthodontic retention via insulin-like growth factor-1[J]. Oral Dis, 2021, 27(2): 290-300.

[本文引用: 1]

ANGIREDDY R, KAZMI H R, SRINIVASAN S, et al. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages[J]. FASEB J, 2019, 33(8): 9167-9181.

[本文引用: 1]

ZHANG Y, ROHATGI N, VEIS D J, et al. PGC1β organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation[J]. J Bone Miner Res, 2018, 33(6): 1114-1125.

[本文引用: 1]

GUO L, CHEN K Z, YUAN J, et al. Estrogen inhibits osteoclasts formation and bone resorption via microRNA-27a targeting PPARγ and APC[J]. J Cell Physiol, 2018, 234(1): 581-594.

[本文引用: 1]

GUO Y S, CHI X P, WANG Y F, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing[J]. Stem Cell Res Ther, 2020, 11(1): 245.

[本文引用: 1]

YAN W H, DIAO S, FAN Z P. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 140.

[本文引用: 1]

FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72.

[本文引用: 1]

JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases[J]. Arch Biochem Biophys, 2021, 702: 108698.

[本文引用: 1]

HARGREAVES M, SPRIET L L. Skeletal muscle energy metabolism during exercise[J]. Nat Metab, 2020, 2(9): 817-828.

[本文引用: 1]

JIN Y, SHEN Y, SU X, et al. The small GTPases Rab27b regulates mitochondrial fatty acid oxidative metabolism of cardiac mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 209.

[本文引用: 1]

PAL S, SINGH M, PORWAL K, et al. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function[J]. Eur J Pharmacol, 2021, 913: 174634.

[本文引用: 1]

LEE S Y, LONG F X. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation[J]. J Clin Invest, 2018, 128(12): 5573-5586.

[本文引用: 1]

KNOWLES H J. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function[J]. Sci Rep, 2020, 10(1): 21072.

[本文引用: 1]

SHARES B H, BUSCH M, WHITE N, et al. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation[J]. J Biol Chem, 2018, 293(41): 16019-16027.

[本文引用: 2]

KUSHWAHA P, ALEKOS N S, KIM S P, et al. Mitochondrial fatty acid β-oxidation is important for normal osteoclast formation in growing female mice[J]. Front Physiol, 2022, 13: 997358.

[本文引用: 1]

LI X M, CHEN Y, MAO Y X, et al. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway[J]. Front Bioeng Biotechnol, 2020, 8: 625.

[本文引用: 1]

MA C, SUN Y N, PI C C, et al. Sirt3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2[J]. Front Cell Dev Biol, 2020, 8: 599376.

[本文引用: 1]

CAO X C, LUO D Q, LI T, et al. MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts[J]. J Bone Miner Metab, 2020, 38(1): 27-37.

[本文引用: 2]

LIU H D, REN M X, LI Y, et al. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1[J]. Free Radic Res, 2022, 56(1): 63-76.

[本文引用: 1]

KIM H N, PONTE F, NOOKAEW I, et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors[J]. Sci Rep, 2020, 10(1): 11933.

[本文引用: 1]

ZENG Z P, ZHOU X C, WANG Y, et al. Mitophagy-a new target of bone disease[J]. Biomolecules, 2022, 12(10): 1420.

[本文引用: 1]

FENG X R, YIN W, WANG J L, et al. Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2021, 246(1): 97-105.

[本文引用: 1]

FAN P, YU X Y, XIE X H, et al. Mitophagy is a protective response against oxidative damage in bone marrow mesenchymal stem cells[J]. Life Sci, 2019, 229: 36-45.

[本文引用: 1]

GUO Y Y, JIA X, CUI Y Z, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis[J]. Redox Biol, 2021, 41: 101915.

[本文引用: 1]

WANG X D, MA H D, SUN J, et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis[J]. Biol Trace Elem Res, 2022, 200(1): 298-307.

[本文引用: 1]

LAHA D, SARKAR J, MAITY J, et al. Polyphenolic compounds inhibit osteoclast differentiation while reducing autophagy through limiting ROS and the mitochondrial membrane potential[J]. Biomolecules, 2022, 12(9): 1220.

[本文引用: 1]

AOKI S, SHIMIZU K, ITO K. Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation[J]. Biochem Biophys Res Commun, 2020, 527(4): 874-880.

[本文引用: 1]

BOCK F J, TAIT S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100.

[本文引用: 1]

RAJABZADEH N, FATHI E, FARAHZADI R. Stem cell-based regenerative medicine[J]. Stem Cell Investig, 2019, 6: 19.

[本文引用: 1]

QIU T, HE Y Y, ZHANG X, et al. Novel role of ER stress and mitochondria stress in serum-deprivation induced apoptosis of rat mesenchymal stem cells[J]. Curr Med Sci, 2018, 38(2): 229-235.

[本文引用: 1]

CHEN Y M, XIONG S B, ZHAO F H, et al. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells[J]. J Biomed Mater Res A, 2019, 107(6): 1253-1263.

[本文引用: 1]

YANG K D, PEI L, ZHOU S M, et al. Metformin attenuates H2O2-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway[J]. Exp Ther Med, 2021, 22(5): 1316.

[本文引用: 1]

ZHENG D L, CUI C L, SHAO C, et al. Coenzyme Q10 inhibits RANKL-induced osteoclastogenesis by regulation of mitochondrial apoptosis and oxidative stress in RAW264.7 cells[J]. J Biochem Mol Toxicol, 2021, 35(7): e22778.

[本文引用: 1]

REN L, CHEN X D, CHEN X B, et al. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells[J]. Front Cell Dev Biol, 2020, 8: 580070.

[本文引用: 1]

WAN M C, TANG X Y, LI J, et al. Upregulation of mitochondrial dynamics is responsible for osteogenic differentiation of mesenchymal stem cells cultured on self-mineralized collagen membranes[J]. Acta Biomater, 2021, 136: 137-146.

[本文引用: 1]

FENG X R, ZHANG W J, YIN W, et al. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells[J]. Exp Biol Med (Maywood), 2019, 244(1): 64-72.

[本文引用: 1]

ZHONG X Y, CUI P, CAI Y P, et al. Mitochondrial dynamics is critical for the full pluripotency and embryonic developmental potential of pluripotent stem cells[J]. Cell Metab, 2019, 29(4): 979-992.e4.

[本文引用: 1]

PAHWA H, KHAN M T, SHARAN K. Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis[J]. Mol Cell Biochem, 2020, 469(1/2): 109-118.

[本文引用: 1]

JEONG S, SEONG J H, KANG J H, et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss[J]. FEBS Lett, 2021, 595(1): 58-67.

[本文引用: 1]

NISHIKAWA K, TAKEGAMI H, SESAKI H. Opa1-mediated mitochondrial dynamics is important for osteoclast differentiation[J]. MicroPubl Biol, 2022. DOI: 10.17912/micropub.biology.000650.

[本文引用: 1]

/