In recent years, with the development of science and technology, stereoscopic video display terminals have become more and more widely used in many fields. Meanwhile, their influence on the eyes and even the whole body has gradually attracted people's attention. Most stereoscopic video display terminals are based on the principle of binocular parallax. They present image pairs with parallax for the left and right eyes respectively, and form stereoscopic images after brain fusion. At present, most studies about the influence of stereoscopic video display terminals on the physiological function of human eyes describe the changes of a certain type of ocular indicators independently, in which changes in visual functions, such as accommodation and convergence ability, tear film and ocular surface functions are particularly important. The appearance of related visual fatigue symptoms may be due to accommodation-vergence conflicts, excessive and rapid parallax changes, excessive retinal spatial frequencies, stereoscopic image distortion, and improper use environment. This paper introduces the principle of stereoscopic display, summarizes related symptoms and changes in visual functions, and discusses the causes of visual discomfort, in order to provide some bases for the healthy use of stereoscopic video display terminals and the clinical diagnosis and treatment of related symptoms.
Keywords:stereoscopic video
;
visual fatigue
;
visual function
;
binocular parallax
LIU Lu, KE Bilian. Research progress in visual fatigue related to stereoscopic video display terminals. Journal of Shanghai Jiao Tong University (Medical Science)[J], 2023, 43(8): 1038-1043 doi:10.3969/j.issn.1674-8115.2023.08.012
LIU Lu was responsible for collecting literature and writing the review. KE Bilian was responsible for checking and correcting the content of the review. Both authors have read the last version of the paper and approved the submission.
利益冲突声明
所有作者声明不存在利益冲突。
COMPETING INTERESTS
All authors disclose no relevant conflict of interests.
SMITH M J, GINGER E J, WRIGHT M, et al. Virtual reality job interview training for individuals with psychiatric disabilities[J]. J Nerv Ment Dis, 2014, 202(9): 659-667.
MARIN-PARDO O, LAINE C M, RENNIE M, et al. A virtual reality muscle-computer interface for neurorehabilitation in chronic stroke: a pilot study[J]. Sensors (Basel), 2020, 20(13): 3754.
RASTEGARPOUR A. A computer-based anaglyphic system for the treatment of amblyopia[J]. Clin Ophthalmol, 2011, 5: 1319-1323.
HERBISON N, MACKEITH D, VIVIAN A, et al. Randomised controlled trial of video clips and interactive games to improve vision in children with amblyopia using the I-BiT system[J]. Br J Ophthalmol, 2016, 100(11): 1511-1516.
LONG Y, SHEN Y, GUO D Y, et al. The effects of consumer-grade virtual reality headsets on adult visual function[J]. Semin Ophthalmol, 2020, 35(3): 170-173.
SHIBATA T, KAWAI T, OTSUKI M, et al. Stereoscopic 3D display with dynamic optical correction for recovering from asthenopia[C]//ANDREW J W, MARK T B, JOHN O M, et al. Stereoscopic Displays and Virtual Reality Systems XII. San Jose: SPIE, 2005: 1-9.
TAKADA H, YAMAMOTO T, SUGIURA A, et al. Effect of an eyesight recovering stereoscopic movie system on visual acuity of middle-aged and myopic young people[C]//DÖSSEL O, SCHLEGEL W C.World Congress on Medical Physics and Biomedical Engineering, September 7‒12, 2009, Munich, Germany. Berlin: Springer, 2009: 331-334.
SOLIMINI A G. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness[J]. PLoS One, 2013, 8(2): e56160.
LEE S H, KIM M, KIM H, et al. Visual fatigue induced by watching virtual reality device and the effect of anisometropia[J]. Ergonomics, 2021, 64(12): 1522-1531.
GAO Y, LIU Y, CHENG D W, et al. A review on development of head mounted display[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 896-904.
WEE S W, MOON N J. Clinical evaluation of accommodation and ocular surface stability relevant to visual asthenopia with 3D displays[J]. BMC Ophthalmol, 2014, 14: 29.
WANG Y W, LI M, YU X P, et al. Effects of continuous stereoscopic image viewing on visual function[J]. Recent Advances in Ophthalmology, 2015, 35(6): 542-545.
WANG J H, LIAO M, TANG A Z, et al. A comparative study of the effects of viewing three-dimensional and planar display videos on visual function[J]. Journal of Sichuan University(Medical Sciences) , 2019, 50(3): 441-444.
SHARPLES S, Cobb S, Moody A, et al. Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems[J]. Displays, 2008, 29(2): 58-69.
YUM H R, PARK S H, KANG H B, et al. Changes in ocular factors according to depth variation and viewer age after watching a three-dimensional display[J]. Br J Ophthalmol, 2014, 98(5): 684-690.
YUM H R, PARK S H, KANG H B, et al. Changes in ocular parameters depending on the motion-in-depth of a three-dimensional display[J]. Br J Ophthalmol, 2015, 99(12): 1706-1712.
NEVEU P, ROUMES C, PHILIPPE M, et al. Stereoscopic viewing can induce changes in the CA/C ratio[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4321-4326.
SUH Y W, OH J, KIM H M, et al. Three-dimensional display-induced transient myopia and the difference in myopic shift between crossed and uncrossed disparities[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 5029-5032.
ZHANG L, REN J, XU L, et al. Visual comfort and fatigue when watching three-dimensional displays as measured by eye movement analysis[J]. Br J Ophthalmol, 2013, 97(7): 941-942.
LIN C H, LIN H C, CHEN C Y, et al. Variations in intraocular pressure and visual parameters before and after using mobile virtual reality glasses and their effects on the eyes[J]. Sci Rep, 2022, 12(1): 3176.
HIROTA M, KANDA H, ENDO T, et al. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation[J]. Ergonomics, 2019, 62(6): 759-766.
YOON H J, KIM J, PARK S W, et al. Influence of virtual reality on visual parameters: immersive versus non-immersive mode[J]. BMC Ophthalmol, 2020, 20(1): 200.
GUO D Y, SHEN Y Y, ZHU M M, et al. Virtual reality training improves accommodative facility and accommodative range[J]. Int J Ophthalmol, 2022, 15(7): 1116-1121.
WANG Q, WANG Q H, LIU C L. Relationship between phoria and visual fatigue in autostereoscopic 3D displays[J]. Jnl Soc Info Display, 2015, 23(6): 277-283.
HUANG Y, LI M, SHEN Y, et al. Study of the immediate effects of autostereoscopic 3D visual training on the accommodative functions of myopes[J]. Invest Ophthalmol Vis Sci, 2022, 63(2): 9.
NOJIRI Y, YAMANOUE H, HANAZATO A, et al. Visual comfort/discomfort and visual fatigue caused by stereoscopic HDTV viewing[C]//Stereoscopic Displays and Virtual Reality Systems XI. San Jose: SPIE, 2004: 303-313.
HOFFMAN D M, GIRSHICK A R, AKELEY K, et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J]. J Vis, 2008, 8(3): 33.1-3330.
LAMBOOIJ M, FORTUIN M, HEYNDERICKX I, et al. Visual discomfort and visual fatigue of stereoscopic displays: a review[J]. J Imaging Sci Technol, 2009, 53(3): 30201-1.
WOODS A J. Crosstalk in stereoscopic displays: a review[J]. J Electr Imag, 2012, 21(4): 040902-1-21.
LÓPEZ J P, RODRIGO J A, JIMÉNEZ D, et al. Stereoscopic 3D video quality assessment based on depth maps and video motion[J].EURASIP J Image Video Process, 2013, 2013(1): 1-14.
YANG J C, LIU Y, MENG Q G, et al. Objective evaluation criteria for stereo camera shooting quality under different shooting parameters and shooting distances[J]. IEEE Sens J, 2015, 15(8): 4508-4521.
POULAKOS S, MONROY R, AYDIN T, et al. A computational model for perception of stereoscopic window violations[C]//Curran Associates.2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX). Pilos: IEEE, 2015: 1-6.
UKAI K, KATO Y. The use of video refraction to measure the dynamic properties of the near triad in observers of a 3-D display[J]. Ophthalmic Physiol Opt, 2002, 22(5): 385-388.
TORII M, OKADA Y, UKAI K, et al. Dynamic measurement of accommodative responses while viewing stereoscopic images[J]. J Mod Opt, 2008, 55(4/5): 557-567.
WANG J H, CHENG Y, LI K Y, et al. 3D visual fatigue of personal computer display[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(5): 1-5.
IWASAKI T, KUBOTA T, TAWARA A. The tolerance range of binocular disparity on a 3D display based on the physiological characteristics of ocular accommodation[J]. Displays, 2009, 30(1): 44-48.
SPERANZA F, TAM W J, RENAUD R, et al. Effect of disparity and motion on visual comfort of stereoscopic images[C]//ANDREW J W, NEIL A D, JOHN O M, et al. Stereoscopic Displays and Virtual Reality Systems XIII. San Jose: SPIE, 2006: 60550B-1-10.
ALHAAG M H, RAMADAN M Z. Using electromyography responses to investigate the effects of the display type, viewing distance, and viewing time on visual fatigue[J]. Displays, 2017, 49: 51-58.